Top companies trust Airbyte to centralize their Data






Select your source

Select your destination

Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors

Cover your custom needs with our extensibility

Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration

Reliability at every level




Airbyte Open Source

Airbyte Cloud

Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check

Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.

White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.


Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
BambooHR is an American technology company that provides human resources software as a service. Founded in 2008 by Ben Peterson and Ryan Sanders, the company is based in Lindon, Utah. BambooHR's services include an applicant tracking system and an employee benefits tracker.
An object-relational database management system, PostgreSQL is able to handle a wide range of workloads, supports multiple standards, and is cross-platform, running on numerous operating systems including Microsoft Windows, Solaris, Linux, and FreeBSD. It is highly extensible, and supports more than 12 procedural languages, Spatial data support, Gin and GIST Indexes, and more. Many web, mobile, and analytics applications use PostgreSQL as the primary data warehouse or data store.
Bamboo HR's API provides access to a wide range of data related to human resources management. The following are the categories of data that can be accessed through the API:
1. Employee data: This includes information about employees such as their name, contact details, job title, department, and employment status.
2. Time off data: This includes information about employee time off requests, approvals, balances, and accruals.
3. Payroll data: This includes information about employee compensation, deductions, and taxes.
4. Performance data: This includes information about employee performance reviews, goals, and feedback.
5. Recruitment data: This includes information about job openings, candidates, and hiring processes.
6. Company data: This includes information about the company's organizational structure, policies, and procedures.
7. Reporting data: This includes information about various HR metrics and analytics that can be used to track and analyze employee performance and engagement.
Overall, Bamboo HR's API provides a comprehensive set of data that can be used to manage and optimize various aspects of HR operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.