Top companies trust Airbyte to centralize their Data






Select your source

Select your destination

Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors

Cover your custom needs with our extensibility

Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration

Reliability at every level




Airbyte Open Source

Airbyte Cloud

Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check

Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.

White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.


Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Microsoft SQL Server is a relational database management (RDBMS) built by Microsoft. As a database server, its primary function is to store and retrieve data upon the request of other software applications, either from the same computer or a different computer across a network—including the internet. To serve the needs of different audiences and workload sizes, Microsoft offers multiple editions (at least 12) of its Microsoft SQL Server.
1. User data: Clevertap's API allows you to extract user data such as user ID, name, email address, phone number, location, and other demographic information.
2. User behavior: You can extract data on user behavior such as app usage, session duration, screen views, clicks, and other actions taken within the app.
3. Campaign data: The API allows you to extract data on campaigns such as email campaigns, push notifications, and in-app messages. This includes data on the number of messages sent, open rates, click-through rates, and conversion rates.
4. Funnel data: You can extract data on user behavior within a specific funnel, such as the number of users who completed a specific action or reached a certain stage in the funnel.
5. Revenue data: The API allows you to extract data on revenue generated by users, including the total revenue generated, average revenue per user, and revenue by product or service.
6. Cohort analysis: You can extract data on user behavior within specific cohorts, such as users who signed up during a specific time period or users who completed a specific action.
7. Predictive analytics: The API allows you to extract data on user behavior and use it to make predictions about future behavior, such as the likelihood of a user making a purchase or churning.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.