Top companies trust Airbyte to centralize their Data
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Slack is an enterprise software platform that facilitates global communication between all sizes of businesses and teams. Slack enables collaborative work to be more efficient and more productive, making it possible for businesses to connect with immediacy from half a world apart. It allows teams to work together in concert, almost as if they were in the same room. Slack transforms the process of communication, bringing it into the 21st century with powerful style.
Convex is a platform that provides a suite of tools for building and deploying machine learning models. It offers a user-friendly interface for data scientists and developers to create and train models, as well as a scalable infrastructure for deploying them in production. Convex also includes features such as automated model tuning, version control, and collaboration tools to streamline the machine learning workflow. The platform is designed to be flexible and customizable, allowing users to integrate their own libraries and frameworks. Overall, Convex aims to simplify the process of building and deploying machine learning models, making it accessible to a wider range of users.
Slack's API provides access to a wide range of data, including:
1. Conversations: This includes information about channels, direct messages, and group messages.
2. Users: This includes information about individual users, such as their name, email address, and profile picture.
3. Files: This includes information about files uploaded to Slack, such as their name, size, and type.
4. Apps: This includes information about the apps installed in Slack, such as their name, description, and permissions.
5. Messages: This includes information about individual messages, such as their text, timestamp, and author.
6. Events: This includes information about events that occur in Slack, such as when a user joins or leaves a channel.
7. Workflows: This includes information about workflows created in Slack, such as their name, description, and status.
8. Analytics: This includes information about how users are interacting with Slack, such as the number of messages sent and received, and the most active channels.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.