Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your ActiveCampaign account. Navigate to the "Contacts" section and select the contacts or data you want to export. Use the "Export" feature to download the data as a CSV file. Ensure that all necessary data fields are included in this export, such as contact details, tags, and any custom fields relevant to your use case.
Open the exported CSV file using a spreadsheet application, like Microsoft Excel or Google Sheets. Examine the data structure and clean up any unnecessary fields or data inconsistencies. Make sure that your data is organized and formatted correctly to match the schema you plan to use in Weaviate. Save the cleaned data again as a CSV file.
If you haven't already set up Weaviate, you can install it locally or access a cloud instance. Follow the installation instructions provided in Weaviate's official documentation. Ensure that you have the necessary permissions and access to the Weaviate instance where you want to import the data.
Access your Weaviate dashboard and define a schema that matches the structure of the data you exported from ActiveCampaign. This involves creating classes and properties in Weaviate that correspond to the fields in your CSV file. Ensure your schema is correctly configured to accommodate all necessary data types and relationships.
Since Weaviate accepts data in JSON format, you need to convert your CSV file to JSON. You can do this manually by writing a script in Python or another language, or use online tools that convert CSV to JSON. Ensure that the JSON data matches the schema defined in Weaviate, including all class names and property types.
Use the Weaviate API to import your JSON data. You can do this by writing a script that uses HTTP POST requests to send the JSON data to the appropriate endpoints in your Weaviate instance. Ensure that each data entry is correctly indexed and associated with the right schema class.
Once the import process is complete, access your Weaviate dashboard and verify that all data has been imported correctly. Check for any discrepancies or errors by querying the data. Use the Weaviate console or API to perform sample queries and validate that the data behaves as expected according to your schema definitions.
By following these steps, you can manually move data from ActiveCampaign to Weaviate without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
ActiveCampaign lets us send email campaigns, automate features, and manage contacts by staff group. ActiveCampaign is a complete email marketing tool remaining advanced automation capabilities. Active Campaign has created several Campaign types to simplify your marketing automation. Using Standard, Automated, Auto Responder, Split Testing, RSS Triggered, and Date Based campaigns provide a variety of specialized options. ActiveCampaign is a customer experience automation (CXA) platform that assists businesses in meaningfully engaging customers.
ActiveCampaign's API provides access to a wide range of data related to marketing automation and customer relationship management. The following are the categories of data that can be accessed through ActiveCampaign's API:
1. Contacts: This includes information about individual contacts such as their name, email address, phone number, and other contact details.
2. Lists: This includes information about the lists of contacts that are stored in ActiveCampaign, such as the name of the list, the number of contacts in the list, and other list-related details.
3. Campaigns: This includes information about the email campaigns that have been sent through ActiveCampaign, such as the subject line, the number of recipients, and other campaign-related details.
4. Automations: This includes information about the automations that have been set up in ActiveCampaign, such as the triggers, actions, and conditions that are used to automate marketing tasks.
5. Deals: This includes information about the deals that have been created in ActiveCampaign, such as the name of the deal, the value of the deal, and other deal-related details.
6. Forms: This includes information about the forms that have been created in ActiveCampaign, such as the name of the form, the fields that are included in the form, and other form-related details.
7. Tags: This includes information about the tags that have been applied to contacts in ActiveCampaign, such as the name of the tag, the number of contacts with the tag, and other tag-related details.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





