Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by researching and understanding the data export capabilities of AppFollow. Typically, AppFollow allows users to export data in formats such as CSV or Excel. Ensure you have the necessary permissions to export data from the platform.
Log into your AppFollow account and navigate to the data section you want to export. Use the platform"s export function to download your data in a CSV format. Save this file to a location on your computer where it can be easily accessed.
Open the exported CSV file using a spreadsheet application like Excel or Google Sheets. Clean the data by removing any unnecessary columns or rows, and ensure your data is well-structured. Each row should represent a single data object, and each column should represent an attribute of that object.
Before importing data into Weaviate, you need to define a schema that matches the structure of your CSV data. Identify the classes and properties within your data and create a corresponding schema in Weaviate. This schema will define how your data is structured within the Weaviate database.
Weaviate expects data in a JSON format for import. Use a script or an online tool to convert your cleaned CSV data into JSON format. Ensure that the JSON data matches the schema defined in Weaviate, with each JSON object corresponding to a row in the CSV and each attribute mapping to a property in the schema.
If not already done, set up a Weaviate instance. This can be done locally using Docker or on a cloud service. Ensure that your Weaviate instance is running and accessible. Check the Weaviate documentation for specific setup instructions and configurations.
Use Weaviate"s RESTful API to import your JSON data. This can be done using a tool like `curl` or a script written in Python or another programming language with HTTP request capabilities. Send POST requests to the Weaviate API endpoint that corresponds to the class defined in your schema, including the JSON data in the request body. Verify that the data has been successfully imported by querying the Weaviate database.
By following these steps, you can move data from AppFollow to Weaviate without using third-party connectors or integrations. Make sure to adhere to data privacy and handling policies throughout the process.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Appfollow is a one-stop platform for app analytics, app reviews management, and app store optimization. Get reviews from the App Store, Google Play to monitor and analyse them. AppFollow is on a mission to help teams working on mobile apps to turn insights from reviews into new product experiences that users love. Mobile teams are responding to feedback in a timely manner, building products they know users will love, and optimizing their performance in the app stores with AppFollow.
Appfollow's API provides access to a wide range of data related to mobile apps and their performance. The following are the categories of data that can be accessed through Appfollow's API:
1. App Store Optimization (ASO) data: This includes data related to app store rankings, keyword rankings, and user reviews.
2. Competitor analysis data: This includes data related to competitor app rankings, keyword rankings, and user reviews.
3. User acquisition data: This includes data related to app installs, uninstall rates, and user retention rates.
4. App performance data: This includes data related to app crashes, bugs, and other performance issues.
5. Social media data: This includes data related to social media mentions and sentiment analysis.
6. Analytics data: This includes data related to app usage, user engagement, and user behavior.
7. Advertising data: This includes data related to app advertising campaigns, ad performance, and ad spend.
Overall, Appfollow's API provides a comprehensive set of data that can help app developers and marketers make informed decisions about their app's performance and user engagement.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





