Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Firstly, ensure that AWS CloudTrail is enabled for your AWS account. CloudTrail records AWS account activity and stores the log files in an S3 bucket. Set up a trail that covers all regions and includes all management events to capture comprehensive audit logs.
Create or specify an existing S3 bucket where CloudTrail will deliver its log files. Ensure that the bucket policy allows CloudTrail to write logs to it, and consider enabling versioning for better data management. Set up proper permissions to control access to the logs.
Create an AWS Lambda function that will be triggered whenever a new log file is added to the S3 bucket. The Lambda function will extract relevant data from the CloudTrail logs. Use the AWS SDK within the Lambda function to read the log files, parse the necessary information, and format it for insertion into MySQL.
Create an AWS Identity and Access Management (IAM) role with permissions to access the S3 bucket and execute the Lambda function. Attach this role to your Lambda function to ensure it can read CloudTrail logs and process them.
Within your Lambda function, write a script using a language like Python or Node.js to connect to your MySQL database. Ensure your database is publicly accessible or within the same VPC as your Lambda function for connectivity. Use a MySQL client library to execute SQL INSERT statements, transferring extracted data into your MySQL tables.
Configure a secure connection to your MySQL database. Use environment variables or AWS Secrets Manager to store sensitive database credentials securely. Ensure that your database's security group allows inbound connections from the Lambda execution environment's IP range or VPC.
Test the entire setup by manually adding a test log file to the S3 bucket and verifying that the data is correctly inserted into your MySQL database. Implement CloudWatch logs and alarms on your Lambda function to monitor execution and troubleshoot any errors in real-time. Regularly review log files and database entries to ensure consistent data transfer.
Following these steps will enable you to transfer AWS CloudTrail logs to a MySQL database using AWS native services and custom scripts, without relying on third-party connectors.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
AWS CloudTrail is a web service developed to simplify and provide assistance with AWS accounts. Enabling compliance, governance, and operational and risk auditing, it allows users to monitor, log, and document AWS account-related activity in an easily searchable format. With its comprehensive account event history function, CloudTrail helps users analyze and troubleshoot security and operational issues, detect unusual account activity, and much more by increasing visibility into customers’ user and resource activity.
AWS CloudTrail provides access to a wide range of data related to AWS account activity and resource usage. The following are the categories of data that can be accessed through the API:
1. Event history: This includes information about all the events that have occurred in an AWS account, such as API calls, console sign-ins, and resource changes.
2. Resource activity: This category includes data related to the usage of AWS resources, such as EC2 instances, S3 buckets, and RDS databases.
3. User activity: This category includes data related to user activity in an AWS account, such as user sign-ins, password changes, and access key usage.
4. Security analysis: This category includes data related to security events in an AWS account, such as failed login attempts, unauthorized access attempts, and changes to security groups.
5. Compliance auditing: This category includes data related to compliance auditing in an AWS account, such as changes to IAM policies, CloudTrail configuration changes, and VPC network changes.
Overall, the AWS CloudTrail API provides a comprehensive view of AWS account activity and resource usage, making it a valuable tool for monitoring and managing AWS environments.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: