Building your pipeline or Using Airbyte
Airbyte is the only open solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say
"The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!"
“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”
“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria. The value of being able to scale and execute at a high level by maximizing resources is immense”
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Azure Table storage, which is a service that stores non-relational structured data in the cloud and it is well known as structured NoSQL data. Azure Table storage is a service that stores structured NoSQL data in the cloud, providing a key/attribute store with a schema less design. Azure Table storage is a very popular service used to store structured NoSQL data in the cloud, providing a Key/attribute store. One can use it to store large amounts of structured, non-relational data.
Azure Table Storage's API gives access to structured data in the form of tables. The tables are composed of rows and columns, and each row represents an entity. The API provides access to the following types of data:
1. Partition Key: A partition key is a property that is used to partition the data in a table. It is used to group related entities together.
2. Row Key: A row key is a unique identifier for an entity within a partition. It is used to retrieve a specific entity from the table.
3. Properties: Properties are the columns in a table. They represent the attributes of an entity and can be of different data types such as string, integer, boolean, etc.
4. Timestamp: The timestamp is a system-generated property that represents the time when an entity was last modified.
5. ETag: The ETag is a system-generated property that represents the version of an entity. It is used to implement optimistic concurrency control.
6. Query results: The API allows querying of the data in a table based on specific criteria. The query results can be filtered, sorted, and projected to retrieve only the required data.
Overall, Azure Table Storage's API provides access to structured data that can be used for various purposes such as storing configuration data, logging, and session state management.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
Azure Table storage, which is a service that stores non-relational structured data in the cloud and it is well known as structured NoSQL data. Azure Table storage is a service that stores structured NoSQL data in the cloud, providing a key/attribute store with a schema less design. Azure Table storage is a very popular service used to store structured NoSQL data in the cloud, providing a Key/attribute store. One can use it to store large amounts of structured, non-relational data.
MySQL is an SQL (Structured Query Language)-based open-source database management system. An application with many uses, it offers a variety of products, from free MySQL downloads of the most recent iteration to support packages with full service support at the enterprise level. The MySQL platform, while most often used as a web database, also supports e-commerce and data warehousing applications, and more.
1. First, you need to create an Azure Table Storage account and obtain the account name and account key. You can find these details in the Azure portal under the "Access keys" section of your storage account.
2. In Airbyte, navigate to the "Sources" tab and click on "Add Source". Select "Azure Table Storage" from the list of available sources.
3. In the "Configure Azure Table Storage" page, enter the account name and account key that you obtained in step 1.
4. Next, enter the name of the table that you want to connect to. You can find the name of the table in the Azure portal under the "Tables" section of your storage account.
5. If you want to filter the data that you retrieve from the table, you can enter a filter expression in the "Filter" field. This expression should be in the OData syntax.
6. Finally, click on "Test Connection" to ensure that Airbyte can connect to your Azure Table Storage account. If the connection is successful, click on "Create Source" to save your configuration.
7. You can now use this source to create a new Airbyte pipeline and start replicating data from your Azure Table Storage account.
1. First, you need to have a MySQL database set up and running. Ensure that you have the necessary credentials to access the database.
2. Log in to your Airbyte account and navigate to the "Destinations" tab.
3. Click on the "Add Destination" button and select "MySQL" from the list of available connectors.
4. Enter the necessary details such as the host, port, username, password, and database name. Ensure that the details are accurate and match the credentials you have for your MySQL database.
5. Test the connection to ensure that Airbyte can successfully connect to your MySQL database. If the connection is successful, you will receive a confirmation message.
6. Once the connection is established, you can configure the settings for your MySQL destination connector. You can choose to enable or disable certain features such as SSL encryption, bulk loading, and more.
7. You can also set up the schema mapping for your MySQL database. This involves mapping the fields from your source data to the corresponding fields in your MySQL database.
8. Once you have configured the settings and schema mapping, you can start syncing data from your source to your MySQL database. You can choose to run the sync manually or set up a schedule for automatic syncing.
9. Monitor the sync process to ensure that data is being transferred accurately and efficiently. You can view the sync logs and troubleshoot any issues that may arise.
10. Congratulations! You have successfully connected your MySQL destination connector on Airbyte and can now start syncing data from your source to your MySQL database.
With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.
We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Ready to get started?
Frequently Asked Questions
Azure Table Storage's API gives access to structured data in the form of tables. The tables are composed of rows and columns, and each row represents an entity. The API provides access to the following types of data:
1. Partition Key: A partition key is a property that is used to partition the data in a table. It is used to group related entities together.
2. Row Key: A row key is a unique identifier for an entity within a partition. It is used to retrieve a specific entity from the table.
3. Properties: Properties are the columns in a table. They represent the attributes of an entity and can be of different data types such as string, integer, boolean, etc.
4. Timestamp: The timestamp is a system-generated property that represents the time when an entity was last modified.
5. ETag: The ETag is a system-generated property that represents the version of an entity. It is used to implement optimistic concurrency control.
6. Query results: The API allows querying of the data in a table based on specific criteria. The query results can be filtered, sorted, and projected to retrieve only the required data.
Overall, Azure Table Storage's API provides access to structured data that can be used for various purposes such as storing configuration data, logging, and session state management.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: