Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, you need to extract the data from Azure Table Storage. Use Azure SDK for Python or PowerShell to query and retrieve the data. For instance, using Python, you can use the `azure-data-tables` library to connect and fetch data from your Azure Table Storage.
Once you have extracted the data, export it to a CSV, JSON, or Parquet file format. This can be done locally or in a temporary storage like an Azure Blob Storage or an AWS S3 bucket if you have cross-account access configured. Ensure the data is properly formatted for easy processing.
If the data is stored locally or in Azure Blob Storage, use the AWS CLI or SDKs like Boto3 for Python to upload the data to an Amazon S3 bucket. Ensure that your AWS credentials are correctly configured to allow access to the S3 bucket.
Set up an AWS Glue Crawler to catalog the data you uploaded to S3. The crawler will create metadata tables in the AWS Glue Data Catalog. Configure the crawler to point to the S3 bucket and specify the format of your data (CSV, JSON, etc.).
Create an AWS Glue ETL job to transform the data if needed. This job will allow you to perform any necessary data transformations or cleansing tasks. Define the source as the data cataloged from your S3 bucket and the target as another S3 bucket where you want the transformed data stored.
Execute the AWS Glue job to process and move the data from the source S3 bucket to the target S3 bucket. Monitor the job to ensure it runs successfully and the data is correctly processed.
Once the Glue job is complete, verify the integrity of the data in the target S3 bucket. Check row counts, data types, and sample data points to ensure accuracy and completeness. Also, verify that the AWS Glue Data Catalog reflects the new dataset structure and schema if applicable.
By following these steps, you can efficiently move data from Azure Table Storage to Amazon S3 using AWS Glue without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Azure Table storage, which is a service that stores non-relational structured data in the cloud and it is well known as structured NoSQL data. Azure Table storage is a service that stores structured NoSQL data in the cloud, providing a key/attribute store with a schema less design. Azure Table storage is a very popular service used to store structured NoSQL data in the cloud, providing a Key/attribute store. One can use it to store large amounts of structured, non-relational data.
Azure Table Storage's API gives access to structured data in the form of tables. The tables are composed of rows and columns, and each row represents an entity. The API provides access to the following types of data:
1. Partition Key: A partition key is a property that is used to partition the data in a table. It is used to group related entities together.
2. Row Key: A row key is a unique identifier for an entity within a partition. It is used to retrieve a specific entity from the table.
3. Properties: Properties are the columns in a table. They represent the attributes of an entity and can be of different data types such as string, integer, boolean, etc.
4. Timestamp: The timestamp is a system-generated property that represents the time when an entity was last modified.
5. ETag: The ETag is a system-generated property that represents the version of an entity. It is used to implement optimistic concurrency control.
6. Query results: The API allows querying of the data in a table based on specific criteria. The query results can be filtered, sorted, and projected to retrieve only the required data.
Overall, Azure Table Storage's API provides access to structured data that can be used for various purposes such as storing configuration data, logging, and session state management.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: