Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by logging into your Clockify account. Navigate to the Reports section, and select the data you wish to export. Typically, you can export data in CSV or Excel format. Choose the desired format and download the file to your local machine.
Open the downloaded file using a spreadsheet application or a text editor. Inspect the data to ensure it includes all necessary fields and is correctly formatted. Clean up any inconsistencies, such as missing headers or malformed entries, to ensure smooth import into TiDB.
If you haven't already, set up a TiDB instance. This can be done either locally or on a cloud provider. Follow the official TiDB documentation to install and configure your environment. Ensure that you have access credentials and the necessary permissions to create databases and tables.
Based on the structure of your Clockify data, create tables in TiDB to accommodate the data. Use the TiDB SQL interface to define tables with appropriate column names and data types. For example, if you have columns for project names, durations, and timestamps, ensure these are represented in your TiDB schema.
Convert your cleaned CSV or Excel data into SQL INSERT statements. This can be done manually or by writing a simple script in a language like Python. Each row from your file should correspond to an INSERT statement that matches the structure of your TiDB tables.
Execute the SQL INSERT statements on your TiDB instance. You can do this using a command-line tool like `mysql` which is compatible with TiDB, or through a SQL client interface. Ensure you execute these commands in the correct order, respecting any relational constraints.
After importing, verify the integrity of your data. Run SELECT queries to ensure all records from Clockify have been successfully imported into TiDB. Check for any discrepancies and correct them as needed. This step ensures that the migration process was successful and the data is ready for use in TiDB.
By following these steps, you can efficiently migrate data from Clockify to TiDB without relying on third-party tools or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Clockify is the most popular free time tracker and timesheet app for teams of all sizes. Unlike all the other time trackers, Clockify lets you have an unlimited number of users for free. Clockify is an online app that works in a browser, but you can also install it on your computer or phone. Clockify is largely used by everyone from freelancers, small businesses, and agencies, to government institutions, NGOs, universities, and Fortune 500 companies.
Clockify's API provides access to a wide range of data related to time tracking and project management. The following are the categories of data that can be accessed through Clockify's API:
1. Time entries: This includes data related to the time spent on tasks, projects, and clients.
2. Projects: This includes data related to the projects being worked on, such as project name, description, and status.
3. Clients: This includes data related to the clients associated with the projects, such as client name, contact information, and billing details.
4. Users: This includes data related to the users who are using Clockify, such as user name, email address, and role.
5. Workspaces: This includes data related to the workspaces created in Clockify, such as workspace name, description, and settings.
6. Reports: This includes data related to the reports generated in Clockify, such as time spent on projects, tasks, and clients.
Overall, Clockify's API provides access to a comprehensive set of data that can be used to track time, manage projects, and generate reports.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





