

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by ensuring your AWS environment is ready. This includes having an AWS account, configuring necessary IAM roles with appropriate permissions, and setting up an S3 bucket where the data will be stored. Ensure that AWS Glue has access to both your Elasticsearch domain and the S3 bucket.
Use the Elasticsearch Scroll API to export data. This API is useful for retrieving large amounts of data efficiently. Write a script (e.g., in Python) that connects to your Elasticsearch cluster, initiates a scroll request, and iterates through the data. Save the retrieved data in JSON format.
Once you have exported the data from Elasticsearch, perform any necessary data transformations locally. This can involve converting JSON data into a CSV or another format that might be more suitable for your analysis or storage needs in S3.
With the data transformed, the next step is to upload it to your S3 bucket. Use the AWS SDK for Python (Boto3) to programmatically upload the files. Ensure that the files are stored in the desired structure within the bucket (e.g., organizing by date or data type).
Create an AWS Glue Crawler to catalog the data in S3. The crawler will automatically create or update tables in the AWS Glue Data Catalog. This step is critical for later querying the data using AWS services like Athena. Configure the crawler to point to the S3 path where the data is stored.
Execute the AWS Glue Crawler to populate the Data Catalog with metadata about the data stored in S3. This process will allow you to query the data using services like Amazon Athena without having to manually define the schema.
Finally, use Amazon Athena to query the data. Athena allows you to run SQL queries directly against data stored in S3 using the metadata provided by the Glue Data Catalog. This step enables easy analysis and utilization of the data without needing to set up a database server.
By following these steps, you can efficiently move data from Elasticsearch to S3 using AWS Glue, without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Elasticsearch is a distributed search and analytics engine for all types of data. Elasticsearch is the central component of the ELK Stack (Elasticsearch, Logstash, and Kibana).
Elasticsearch's API provides access to a wide range of data types, including:
1. Textual data: Elasticsearch can index and search through large volumes of textual data, including documents, emails, and web pages.
2. Numeric data: Elasticsearch can store and search through numeric data, including integers, floats, and dates.
3. Geospatial data: Elasticsearch can store and search through geospatial data, including latitude and longitude coordinates.
4. Structured data: Elasticsearch can store and search through structured data, including JSON, XML, and CSV files.
5. Unstructured data: Elasticsearch can store and search through unstructured data, including images, videos, and audio files.
6. Log data: Elasticsearch can store and search through log data, including server logs, application logs, and system logs.
7. Metrics data: Elasticsearch can store and search through metrics data, including performance metrics, network metrics, and system metrics.
8. Machine learning data: Elasticsearch can store and search through machine learning data, including training data, model data, and prediction data.
Overall, Elasticsearch's API provides access to a wide range of data types, making it a powerful tool for data analysis and search.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: