

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data from your Firebase Realtime Database. You can achieve this by using the Firebase Admin SDK. Write a script in your preferred programming language (Node.js, Python, etc.) to extract data and save it as a JSON file. This involves initializing the Firebase Admin SDK, authenticating, and accessing your database to retrieve the data.
Once you have your data in JSON format, you may need to transform it to fit the schema or format you want in Databricks. This step could involve flattening nested data structures or converting data types. Use a scripting language like Python to preprocess the JSON file, ensuring it matches your desired schema.
Set up your Databricks environment if not already configured. This involves creating a Databricks account, setting up a cluster, and configuring the necessary permissions and storage. Ensure you have access to a cloud storage solution (like AWS S3, Azure Blob Storage, or Google Cloud Storage) that Databricks can read from.
Upload the transformed JSON data to a cloud storage bucket. Choose a storage solution compatible with Databricks, such as Amazon S3, Azure Blob Storage, or Google Cloud Storage. This step involves using the cloud provider's CLI or web interface to securely upload your JSON file.
In Databricks, configure the environment to access your cloud storage. This typically involves setting up the appropriate credentials and mounting the storage bucket to Databricks. Use the Databricks UI or a notebook to configure and test the connection, ensuring Databricks can read from the storage location.
Use Databricks notebooks to load the JSON data into the Lakehouse. Use Spark SQL or PySpark to read the JSON file from the mounted storage and write it into Databricks tables. This process may involve defining the schema, parsing the JSON, and handling any necessary data transformations.
After loading the data into Databricks, validate its accuracy by running queries to ensure it matches the original dataset from Firebase. Optimize the data storage by converting tables to Delta Lake format, which provides benefits like ACID transactions and efficient data management. Use Databricks tools to index and partition the data for improved performance.
By following these steps, you can systematically migrate data from Firebase Realtime Database to Databricks Lakehouse without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
The Firebase Real-time Database allows you to build rich, collaborative applications by allowing secure access to the database directly from client-side code. The Firebase Real-time Database is a NoSQL database from which we can store and sync the data between our users in real-time. Firebase Real-time Database is a solution that stores data in the cloud and offers an easy way to sync your data among various devices, and it is a cloud-hosted database. Data is stored as JSON and synchronized in real-time to every connected client.
Firebase's API gives access to a wide range of data types, including:
1. Real-time database: This includes data that is stored in real-time and can be accessed and updated in real-time.
2. Cloud Firestore: This is a NoSQL document database that stores data in documents and collections.
3. Authentication: This includes user data such as email, password, and authentication tokens.
4. Cloud Storage: This includes data such as images, videos, and other files that are stored in the cloud.
5. Cloud Functions: This includes data that is processed by serverless functions in the cloud.
6. Cloud Messaging: This includes data related to push notifications and messaging.
7. Analytics: This includes data related to user behavior and app usage.
8. Performance Monitoring: This includes data related to app performance and user experience.
9. Remote Config: This includes data related to app configuration and feature flags.
Overall, Firebase's API provides access to a wide range of data types that are essential for building modern web and mobile applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: