Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before starting the data migration, familiarize yourself with the Freshsales API documentation. This will help you understand the endpoints available for accessing the data you need, the authentication methods required, and the structure of the data returned by Freshsales.
Obtain the API key or token from your Freshsales account. Usually, this can be done by navigating to the API settings within your Freshsales dashboard. Ensure you have the necessary permissions to access the data you intend to migrate. This token will be used for authenticating your API requests.
Write a script in a programming language of your choice (e.g., Python, Node.js) to make HTTP requests to the Freshsales API. Use the API token for authentication and specify the endpoints from which you want to extract data (such as contacts, leads, deals, etc.). Parse the JSON response to structure the data accordingly.
Once the data is extracted, you may need to transform it into a format suitable for MongoDB. Ensure that the data types are consistent with MongoDB"s BSON format, and consider flattening nested structures if needed. This step may involve cleaning up data, renaming fields, or restructuring arrays and objects.
Install and configure MongoDB on your local machine or server. Ensure that you have a running MongoDB instance and access to the MongoDB shell or a client tool like MongoDB Compass. Create a database and relevant collections where the Freshsales data will be stored.
Use a programming library or driver for MongoDB in your chosen language (e.g., PyMongo for Python) to insert the transformed data into your MongoDB database. Ensure you handle any potential errors during the insertion process, such as duplicate key errors or connection timeouts.
Once the data is loaded into MongoDB, verify the integrity and correctness of the data. Perform checks to ensure that all records have been transferred accurately and completely. You can query the MongoDB database to compare sample records with the original data in Freshsales to confirm successful migration.
By following these steps, you can manually migrate data from Freshsales to a MongoDB database without relying on third-party tools or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Freshsales is a modern, AI-powered sales automation and customer relationship management (CRM) solution designed to help businesses streamline their sales processes and drive revenue growth. It offers a range of features, including lead and contact management, deal tracking, sales forecasting, email integration, and automation. Freshsales' AI capabilities, such as lead scoring and intelligent data capture, provide sales teams with valuable insights and intelligent recommendations. Freshsales integrates seamlessly with popular business tools, allowing for a centralized view of customer data.
Freshsales's API provides access to a wide range of data related to customer relationship management (CRM) and sales automation. The following are the categories of data that can be accessed through Freshsales's API:
1. Contacts: Information about individual contacts, including their name, email address, phone number, and job title.
2. Accounts: Information about companies or organizations, including their name, address, and industry.
3. Deals: Information about sales deals, including the deal amount, stage, and expected close date.
4. Activities: Information about activities related to sales and customer interactions, including calls, emails, and meetings.
5. Notes: Information about notes and comments related to contacts, accounts, and deals.
6. Tasks: Information about tasks related to sales and customer interactions, including due dates and priorities.
7. Custom fields: Information about custom fields that can be added to contacts, accounts, and deals to capture additional data.
8. Reports: Information about reports generated from the data in Freshsales, including sales performance reports and pipeline reports.
Overall, Freshsales's API provides access to a comprehensive set of data that can be used to improve sales and customer relationship management processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





