Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, you need to access the Google News data using the Google News API. Ensure you have an API key from Google. Use HTTP requests to fetch the news data in JSON format. You can do this by constructing a URL with your API key and desired query parameters (like search keywords, language, etc.) and making GET requests to this URL.
Once you have the data in JSON format, parse it to extract the necessary information. Use a programming language like Python to read the JSON response. Organize the data into a structured format (such as a list of dictionaries) that you can easily convert into a CSV or JSON file for storage in S3.
Log into your AWS Management Console and navigate to S3. Create a new bucket where you will store the extracted Google News data. Ensure the bucket has the appropriate permissions to allow data uploads (e.g., ensure that your AWS IAM user has `PutObject` permissions).
Convert your structured data into a CSV or JSON file using Python's built-in libraries or pandas for CSV conversion. This file will be uploaded to your S3 bucket. Ensure that your data fields are correctly mapped to the CSV columns or JSON structure.
Use the AWS SDK for Python (boto3) to upload your CSV or JSON file to the designated S3 bucket. Install boto3 if not already installed, configure your AWS credentials, and use the `upload_file` method to transfer the file to S3.
In the AWS Glue console, create a new crawler. Configure it to scan your S3 bucket where your data file resides. The crawler will infer the schema and create a table in the AWS Glue Data Catalog. Ensure the IAM role associated with the crawler has permissions to access the S3 bucket.
Once the crawler has cataloged the data, create an AWS Glue ETL job to process and transform the data if necessary. Use AWS Glue's built-in ETL capabilities to clean, transform, and load the data into a format suitable for your end-use, such as analytics or machine learning. Schedule this job to run at your desired frequency to keep your data up-to-date.
By following these steps, you can efficiently move data from Google News to AWS S3 and AWS Glue without using third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
GNews stands for Google News which is a news notification program for the Google Chrome internet browser. It is a personalized news aggregator that organizes and highlights what's happening in the world so you can discover more about the stories. Google News assists you organize, find, and understand the news. You can change your settings to find more stories you want. Google News helps you organize, find, and understand the news.
Google News API provides access to a wide range of data related to news articles and sources. The following are the categories of data that can be accessed through the API:
1. Articles: The API provides access to news articles from various sources, including the title, description, author, and publication date.
2. Sources: The API allows users to retrieve information about news sources, including the name, description, and URL.
3. Topics: The API provides access to news articles based on specific topics, such as sports, politics, and entertainment.
4. Locations: The API allows users to retrieve news articles based on specific locations, such as cities, states, and countries.
5. Languages: The API provides access to news articles in different languages, including English, Spanish, French, and German.
6. Images: The API allows users to retrieve images related to news articles, including the image URL and caption.
7. Videos: The API provides access to news videos from various sources, including the video URL and description.
Overall, the Google News API provides a comprehensive set of data related to news articles and sources, making it a valuable resource for developers and researchers.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





