

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by creating a new Google Cloud project or select an existing one. Enable billing and ensure that you have the necessary permissions to use BigQuery and other required Google Cloud services.
Navigate to the Google Cloud Console API Library. Search for the "Admin SDK" and enable it for your project. This API will allow you to access data from Google Directory.
In the Google Cloud Console, go to the IAM & Admin section and create a new service account. Assign the necessary roles, such as `Admin SDK API` and `BigQuery Data Editor`, to allow it to access Google Directory data and write to BigQuery. Generate and download a JSON key file for authentication.
In your Google Workspace Admin Console, navigate to the Security section and select "Manage API client access." Enter the client ID of your service account and authorize the required OAuth scopes, such as `https://www.googleapis.com/auth/admin.directory.user.readonly`, to allow the service account to impersonate an admin and access Google Directory.
Write a Python script to authenticate using the service account and extract data from Google Directory using the Admin SDK. Utilize the `google-auth` library to handle authentication and `google-api-python-client` to interact with the Directory API. Extract relevant user data or other directory information as needed.
Process the extracted data to ensure it's in a format suitable for BigQuery. This may involve converting data into a JSON or CSV format, aligning data types, and handling any necessary data transformations or cleaning tasks.
Use the BigQuery client library for Python to authenticate and load the transformed data into your BigQuery dataset. Create a new table or append to an existing one as needed. Ensure that your data schema in BigQuery matches the structure of your transformed data to prevent errors during the load process.
By following these steps, you can successfully move data from Google Directory to BigQuery without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Google (Workspace) Directory is, simply put, a user management system for Google Workspace. It allows IT admins to manage users’ access, facilitates and governs user sign-ons, and, ultimately, is meant to enable users to sign in to multiple Google services through one Google identity. Other features include the ability to monitor devices connected to a business’s domain, manage organizations’ structures, audit applications to which users have approved access, and revoke unauthorized apps.
Google Directory's API provides access to a wide range of data related to the Google Directory service. The API allows developers to retrieve information about various categories of data, including:
- Directory listings: Information about businesses, organizations, and other entities listed in the Google Directory.
- Categories: The different categories and subcategories used to organize listings in the directory.
- Reviews and ratings: User-generated reviews and ratings for businesses and other entities listed in the directory.
- Contact information: Phone numbers, addresses, and other contact information for businesses and organizations listed in the directory.
- Images and videos: Images and videos associated with listings in the directory.
- User profiles: Information about users who have contributed reviews and ratings to the directory.
Overall, the Google Directory API provides developers with a wealth of data that can be used to build applications and services that leverage the information contained in the directory.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: