

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing the Greenhouse platform to extract the required data. This can typically be done using Greenhouse's built-in export functionality. Navigate to the specific reports or data sections you need and export the data in a CSV or JSON format. Ensure you have the necessary permissions and access rights to perform data exports.
Once the data is exported, prepare it for transfer by cleaning and organizing it on your local machine. Check for any inconsistencies or errors in the data. If needed, convert the data into a format that is compatible with Databricks, such as CSV or Parquet, which are commonly used in data processing tasks.
Log into your Databricks account and set up a new Databricks Lakehouse environment if you haven't already. Ensure you have the necessary permissions to create and manage clusters. Configure your cluster with the appropriate settings and resources to handle the data you will be uploading.
Transfer the prepared data files to a cloud storage service that is accessible by Databricks, such as AWS S3, Azure Blob Storage, or Google Cloud Storage. You can use the respective cloud provider's CLI tools or web interface to upload the data files. Make sure the data is stored in a secure and organized manner, using folders or buckets as needed.
In your Databricks notebook, use the Databricks File System (DBFS) to mount the cloud storage location where your data files are stored. This can be done using the `%fs` magic command or the `dbutils.fs.mount()` function. Ensure you provide the necessary credentials and configurations for accessing the cloud storage.
After mounting the cloud storage, load the data into Databricks Lakehouse by reading the files using Spark DataFrames. Use appropriate Spark commands to read the data in the format you uploaded (e.g., `spark.read.csv()` for CSV files). You can also perform any additional transformations or data cleaning required within the Databricks environment.
Finally, verify the data has been loaded correctly by performing data validation checks. This could involve schema validation, data quality checks, or simple queries to ensure the data is accurate and complete. Organize the data within Databricks Lakehouse by saving it into tables or structured formats suitable for your use case, leveraging Delta Lake capabilities for versioning and optimization if necessary.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Greenhouse is a software company that specializes in helping businesses acquire talent. It offers a variety of software tools and services to help businesses throughout all aspects of the hiring process, from applicant tracking systems to recruiting software. With the goal of helping businesses find and hire the ideal candidate, Greenhouse helps employers improve the efficiency and effectiveness of the recruitment and hiring process.
Greenhouse's API provides access to a wide range of data related to the recruitment process. The following are the categories of data that can be accessed through the API:
1. Candidates: Information about candidates who have applied for a job, including their name, contact details, resume, and application status.
2. Jobs: Details about the job openings, including the job title, location, department, and job description.
3. Applications: Information about the applications submitted by candidates, including the date of submission, the source of the application, and the status of the application.
4. Interviews: Details about the interviews scheduled with candidates, including the date, time, location, and interviewer.
5. Offers: Information about the job offers made to candidates, including the salary, benefits, and start date.
6. Users: Details about the users who have access to the Greenhouse account, including their name, email address, and role.
7. Departments: Information about the departments within the organization, including the name, description, and manager.
8. Sources: Details about the sources of the candidates, including job boards, referrals, and social media.
Overall, Greenhouse's API provides a comprehensive set of data that can be used to streamline the recruitment process and make data-driven decisions.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: