Summarize this article with:



Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, log in to your Insightly account. Navigate to the data you wish to export, such as contacts, organizations, or projects. Use Insightly's built-in export feature to download the data in a CSV format. This can usually be done by selecting the data type and clicking on the 'Export' option, which will generate a CSV file for download.
Open the exported CSV files to ensure that all necessary data fields are included and properly formatted. Check for any special characters or formatting issues that might cause errors during import. You may need to adjust column headings or data formats to align with Teradata's requirements.
Ensure you have access to the Teradata environment where you intend to import the data. This includes having the necessary permissions and credentials to create tables and load data. Use a Teradata client tool such as Teradata Studio or BTEQ to connect to your Teradata database.
Based on the structure of your CSV files, create corresponding tables in Teradata. Use SQL Data Definition Language (DDL) statements to define the schema, specifying data types and constraints that match the CSV data. For example:
```sql
CREATE TABLE InsightlyData (
ContactID INTEGER,
FirstName VARCHAR(100),
LastName VARCHAR(100),
Email VARCHAR(100)
-- Add other fields as necessary
);
```
Use Teradata's bulk loading utilities, such as the Teradata Parallel Transporter (TPT) or the BTEQ utility, to load the CSV data into a staging table. This step involves writing a script or command to read the CSV file and insert data into a staging table in Teradata.
Once the data is loaded into the staging table, perform data validation checks to ensure accuracy and completeness. This can include comparing record counts, verifying data types, and checking for any missing or erroneous data. Use SQL queries to perform these validations.
After validating the data, transfer it from the staging tables to the production tables in Teradata. Use SQL INSERT INTO SELECT statements to move the data, ensuring that any necessary transformations or calculations are applied during the transfer. Finally, perform a final validation in the production tables to confirm that the data transfer was successful.
By following these steps, you can manually move data from Insightly to Teradata without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Insightly is a cloud-based customer relationship management (CRM) software that helps businesses manage their sales, marketing, and customer service activities. It provides a centralized platform for managing customer interactions, tracking leads and opportunities, and automating workflows. Insightly also offers project management tools, allowing teams to collaborate on tasks and projects, and track progress in real-time. The software integrates with popular business applications such as Google Apps, Office 365, and Mailchimp, making it easy to streamline workflows and improve productivity. With Insightly, businesses can gain valuable insights into their customers and improve their overall customer experience.
Insightly's API provides access to a wide range of data related to customer relationship management (CRM) and project management. The following are the categories of data that can be accessed through Insightly's API:
1. Contacts: This includes information about individuals or organizations that are associated with a company, such as their name, email address, phone number, and job title.
2. Organizations: This includes information about companies or other types of organizations, such as their name, address, and industry.
3. Opportunities: This includes information about potential sales opportunities, such as the name of the opportunity, the expected revenue, and the stage of the sales process.
4. Projects: This includes information about ongoing projects, such as the project name, description, and status.
5. Tasks: This includes information about tasks that need to be completed as part of a project, such as the task name, due date, and status.
6. Events: This includes information about events that are scheduled, such as the event name, date, and location.
7. Notes: This includes information about notes that have been added to a contact, organization, opportunity, project, or task.
8. Emails: This includes information about emails that have been sent or received by a contact or organization.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





