

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by launching Metabase and navigate to the specific dashboard or query you want to export. Use Metabase's export feature to download the data in a CSV or JSON format. This is done by clicking on the export button, typically found in the query results interface, and selecting your desired file format.
Once you have your data file, open it to ensure that the data is correctly formatted. Ensure that the data types and structures are consistent and suitable for Elasticsearch. Remove any unnecessary columns and clean the data to avoid transformation issues later.
Use a scripting language like Python to transform the data into a format that Elasticsearch can ingest. You will need to convert each row of your CSV or JSON file into a JSON document compatible with Elasticsearch. This involves ensuring proper key-value pairs and data types. Libraries like Pandas can be useful for reading and manipulating the data.
Before importing data, create an index in Elasticsearch where your data will reside. Use Elasticsearch's REST API to define the index and mapping. This step involves specifying the index name and defining the data types for the fields to ensure they match the data being imported.
Utilize the Elasticsearch Bulk API to upload your transformed JSON documents. Write a script, again using Python or a similar language, to read through your transformed data and send it to Elasticsearch in batches. The Bulk API allows you to efficiently insert multiple documents with a single request, which is crucial for handling larger datasets.
After the upload process, verify that the data is correctly indexed in Elasticsearch. Use the Elasticsearch Kibana console or the REST API to query the index and check that the data appears as expected. Look for any discrepancies in the number of documents, data types, or missing fields.
Once you're satisfied with the data transfer, consider creating a script or cron job to automate this process for future data migrations. This can involve scheduling regular data exports from Metabase, transforming the data, and using the Bulk API to update your Elasticsearch index. Automation ensures data consistency and minimizes manual effort for ongoing data synchronization.
By following these steps, you can efficiently migrate data from Metabase to Elasticsearch without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Metabase is accessible to all. Metabase is a self-service business intelligence software and it is a BI tool with a friendly UX and integrated tooling to let your company explore data on its own. Metabase is the easy, open-source way for everyone in your company to ask questions and learn from data. Metabase is an open-source business intelligence tool that lets you create charts and dashboards using data from a variety of databases and data sources. It generally assists users to create charts and dashboards from their databases.
Metabase's API provides access to a wide range of data types, including:
1. Metrics: These are numerical values that can be used to measure performance or track progress over time. Examples include revenue, website traffic, and customer satisfaction scores.
2. Dimensions: These are attributes that can be used to group or filter data. Examples include date, location, and product category.
3. Filters: These are criteria that can be used to limit the data returned by a query. Examples include date ranges, customer segments, and product types.
4. Joins: These are used to combine data from multiple tables or sources. Examples include joining customer data with sales data to analyze customer behavior.
5. Aggregations: These are used to summarize data by grouping it into categories and calculating metrics for each category. Examples include calculating average revenue per customer or total sales by product category.
6. Custom SQL: This allows users to write their own SQL queries to access and manipulate data in any way they choose.
Overall, Metabase's API provides a powerful tool for accessing and analyzing data from a wide range of sources, making it an ideal choice for businesses and organizations of all sizes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: