

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from Microsoft Dataverse. Use Power Apps to navigate to your Dataverse environment. From there, you can utilize the built-in export functionality to download tables or datasets as CSV or Excel files. This provides a manageable format for transferring data.
Once you have your data in CSV or Excel format, review and clean the data to ensure it matches the schema required by BigQuery. Check for inconsistencies, missing values, and ensure data types are consistent across columns. Save the cleaned file in a CSV format, as it's the most compatible with BigQuery.
Log in to your Google Cloud Platform (GCP) account and navigate to Google Cloud Storage. Create a new bucket where you will temporarily store your CSV file. Choose a unique and relevant name for your bucket that aligns with GCP naming conventions.
Once your bucket is ready, upload your prepared CSV file to Google Cloud Storage. Navigate to your bucket, click on “Upload Files,” and select your CSV file. This step is crucial as BigQuery can easily access data stored in Google Cloud Storage.
Go to the BigQuery console in GCP and create a new dataset. Datasets in BigQuery are logical containers for tables, and you need to ensure your naming is consistent with your project's naming conventions. This step is essential for organizing your data once imported.
In the BigQuery console, create a new table and select the option to load data from Google Cloud Storage. Specify the path to your CSV file in the bucket. During this step, configure the schema to match your data, setting the appropriate data types for each column. Ensure that you check the options for CSV, such as comma as the delimiter, and handle any necessary file encoding settings.
After loading the data, run a few queries in BigQuery to ensure the integrity and accuracy of the imported data. Check for any discrepancies or errors that might have occurred during the transfer process. This final verification step ensures that your data is ready to be used for analytics or other operations in BigQuery.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Microsoft Dataverse provides access to the org-based database on Microsoft Dataverse in the current environment This connector was anciently known as Common Data Service. Microsoft Dataverse is one kind of data storage and management engine serving as a foundation for Microsoft’s Power Platform, Office 365, and Dynamics 365 apps. It can easily decouple the data from the application, permitting an administrator to analyze from every possible angle and report on data previously existing in different locations.
Microsoft Dataverse's API provides access to a wide range of data types, including:
1. Entities: These are the primary data objects in Dataverse, such as accounts, contacts, and leads.
2. Fields: These are the individual data elements within an entity, such as name, address, and phone number.
3. Relationships: These define the connections between entities, such as the relationship between a contact and an account.
4. Business rules: These are rules that govern how data is entered and processed within Dataverse.
5. Workflows: These are automated processes that can be triggered by specific events or conditions within Dataverse.
6. Plugins: These are custom code modules that can be used to extend the functionality of Dataverse.
7. Web resources: These are files such as HTML, JavaScript, and CSS that can be used to customize the user interface of Dataverse.
Overall, the Dataverse API provides access to a wide range of data types and functionality, making it a powerful tool for developers and users alike.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: