

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, ensure that you have a MongoDB server running. You can set up a local MongoDB server or use a cloud-based service like MongoDB Atlas. Make sure you have the necessary credentials, such as the host, port, and database name, to connect to your MongoDB instance.
Access your n8n instance and create a new workflow. This will be the environment where you will configure the nodes to handle data and send it to MongoDB. Make sure you have access to your n8n environment and understand how to navigate and create workflows.
Add a node in n8n that represents your data source. This could be an HTTP Request node to pull data from an API, a Webhook node to receive data, or any other node that fits your data input source. Configure this node to retrieve or receive the data you intend to transfer to MongoDB.
If needed, add additional nodes to process the data as required. Use Function nodes to transform the data, Set nodes to define specific fields, or any other necessary nodes to prepare the data in the format required by MongoDB. Ensure that the data is structured correctly for MongoDB insertion, typically as JSON objects.
Use a Function node to prepare for connecting to MongoDB. In this node, write JavaScript code to establish a connection to MongoDB using the `mongodb` package, which n8n supports. You need to import the package and use your MongoDB credentials to create a client connection.
Continuing in the Function node, use the MongoDB client to insert the prepared data into the desired collection. The JavaScript code should use the `insertOne()` or `insertMany()` methods of the MongoDB client to add the data to the database. Make sure to handle any potential errors in the connection or insertion.
Execute the n8n workflow to test the data transfer process. Check the n8n execution logs for any errors and ensure that the data appears in MongoDB as expected. Verify the data integrity and structure in MongoDB to confirm that the transfer was successful.
By following these steps, you can effectively move data from n8n to MongoDB without relying on third-party connectors or integrations. Adjust the steps according to your specific use case and data requirements.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
N8n is a free and open fair-code distributed node-based Workflow Automation Tool. You can self-host n8n, easily extend it, and even you can use it. n8n is an extendable workflow automation tool that enables you to connect anything to everything via its open, fair-code model. Berlin, Germany n8n. With a fair-code distribution model, n8n will always have visible source code, be available to self-host, and allow you to add your own custom functions, logic, and apps.
N8n's API provides access to a wide range of data types, including:
1. Workflow data: This includes information about the workflows created in n8n, such as their names, descriptions, and trigger events.
2. Node data: This includes data related to the individual nodes used in workflows, such as their names, types, and configurations.
3. Execution data: This includes information about the execution of workflows, such as the start and end times, the status of each node, and any errors encountered.
4. Credentials data: This includes data related to the credentials used to authenticate with external services, such as API keys and access tokens.
5. Workflow run data: This includes data related to the runs of individual workflows, such as the input and output data, the status of each node, and any errors encountered.
6. Node run data: This includes data related to the runs of individual nodes within workflows, such as the input and output data, the status of the node, and any errors encountered.
Overall, n8n's API provides access to a comprehensive set of data types that can be used to monitor and manage workflows, troubleshoot issues, and optimize performance.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: