Building your pipeline or Using Airbyte
Airbyte is the only open solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start snycing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say
The intake layer of Datadog’s self-serve analytics platform is largely built on Airbyte.Airbyte’s ease of use and extensibility allowed any team in the company to push their data into the platform - without assistance from the data team!
“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”
“We chose Airbyte for its ease of use, its pricing scalability and its absence of vendor lock-in. Having a lean team makes them our top criteria. The value of being able to scale and execute at a high level by maximizing resources is immense”
Parquet File is a columnar storage file format that is designed to store and process large amounts of data efficiently. It is an open-source project that was developed by Cloudera and Twitter. Parquet File is optimized for use with Hadoop and other big data processing frameworks, and it is designed to work well with both structured and unstructured data. The format is highly compressed, which makes it ideal for storing and processing large datasets. Parquet File is also designed to be highly scalable, which means that it can be used to store and process data across multiple nodes in a distributed computing environment.
Weaviate is an open-source, cloud-native, real-time vector search engine that allows developers to build intelligent applications with natural language processing (NLP) capabilities. It uses machine learning algorithms to understand the meaning of unstructured data and provides a semantic search engine that can retrieve relevant information from large datasets. Weaviate can be used to build chatbots, recommendation systems, and other intelligent applications that require NLP capabilities. It is designed to be scalable, flexible, and easy to use, with a RESTful API that allows developers to integrate it into their applications quickly. Weaviate is built on top of Kubernetes and can be deployed on-premises or in the cloud.
1. Open the Airbyte dashboard and click on "Sources" on the left-hand side of the screen.
2. Click on the "Create Connection" button and select "Parquet File" from the list of available connectors.
3. Enter a name for your connection and click on "Next".
4. In the "Configuration" tab, enter the path to your Parquet file in the "File Path" field.
5. If your Parquet file is password-protected, enter the password in the "Password" field.
6. If your Parquet file is encrypted, select the appropriate encryption type from the "Encryption Type" dropdown menu and enter the encryption key in the "Encryption Key" field.
7. Click on "Test Connection" to ensure that your credentials are correct and that Airbyte can connect to your Parquet file.
8. If the test is successful, click on "Create" to save your connection.
9. You can now use this connection to create a new Airbyte pipeline and start syncing data from your Parquet file to your destination.
1. First, navigate to the Weaviate destination connector on Airbyte's website.
2. Click on the "Get Started" button to begin the setup process.
3. Enter the required credentials for your Weaviate instance, including the URL, API key, and schema name.
4. Test the connection to ensure that the credentials are correct and the connection is successful.
5. Choose the tables or collections that you want to sync from your source connector to Weaviate.
6. Map the fields from your source connector to the corresponding fields in Weaviate.
7. Set up any necessary transformations or filters to ensure that the data is formatted correctly for Weaviate.
8. Schedule the sync to run at regular intervals or manually trigger it as needed.
9. Monitor the sync to ensure that the data is being transferred correctly and troubleshoot any issues that arise.
10. Once the sync is complete, verify that the data has been successfully transferred to Weaviate.
With Airbyte, creating data pipelines take minutes, and the data integration possibilities are endless. Airbyte supports the largest catalog of API tools, databases, and files, among other sources. Airbyte's connectors are open-source, so you can add any custom objects to the connector, or even build a new connector from scratch without any local dev environment or any data engineer within 10 minutes with the no-code connector builder.
We look forward to seeing you make use of it! We invite you to join the conversation on our community Slack Channel, or sign up for our newsletter. You should also check out other Airbyte tutorials, and Airbyte’s content hub!
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Ready to get started?
Frequently Asked Questions
Parquet File's API gives access to various types of data, including:
• Structured data: Parquet files can store structured data in a columnar format, making it easy to query and analyze large datasets.
• Semi-structured data: Parquet files can also store semi-structured data, such as JSON or XML, allowing for more flexibility in data storage.
• Unstructured data: Parquet files can store unstructured data, such as text or binary data, making it possible to store a wide range of data types in a single file.
• Big data: Parquet files are designed for big data applications, allowing for efficient storage and processing of large datasets.
• Machine learning data: Parquet files are commonly used in machine learning applications, as they can store large amounts of data in a format that is optimized for processing by machine learning algorithms.
Overall, Parquet File's API provides access to a wide range of data types, making it a versatile tool for data storage and analysis in a variety of applications.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: