

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by familiarizing yourself with the Paystack API documentation. Paystack provides RESTful APIs that allow you to access payment data, customer details, transactions, and more. Make sure you understand the endpoints, request methods (GET, POST), required headers, and authentication methods (usually, Bearer Token).
Prepare your development environment by installing necessary programming tools. You can use a language like Python, JavaScript (Node.js), or PHP that supports HTTP requests. Ensure you have access to a MySQL client or GUI to interact with your database. Install any required libraries for making HTTP requests, such as `requests` in Python or `axios` in Node.js.
Use your programming language of choice to authenticate with Paystack using an API key. This typically involves adding an Authorization header with your Bearer token. Once authenticated, make API requests to retrieve the desired data (e.g., transactions). For example, in Python, you can use the `requests` library to perform a GET request to an endpoint like `https://api.paystack.co/transaction`.
Once you have retrieved the data, process it into a structure that matches your MySQL database schema. This might involve filtering unnecessary fields, renaming keys, or converting data types. Ensure data integrity by checking for any missing or malformed data entries and handle them accordingly.
Establish a connection to your MySQL database from your script. This requires MySQL connection credentials such as host, username, password, and database name. Use a library like `mysql-connector-python` in Python or `mysql` in Node.js to create this connection. Ensure that your database has the necessary tables and columns to store the Paystack data.
Write SQL queries to insert the structured data into your MySQL database. This typically involves `INSERT` statements, but might also include `UPDATE` if you need to refresh existing records. Use parameterized queries to prevent SQL injection attacks. Execute these queries through your established database connection, handling any exceptions or errors that arise.
To keep your MySQL database updated with the latest data from Paystack, automate the script execution. Use cron jobs in Unix-based systems or Task Scheduler in Windows to run your script at regular intervals. Ensure the automation process includes error logging and notifications in case of failures, so you can monitor and maintain the data transfer process effectively.
By following these steps, you can efficiently transfer data from Paystack to your MySQL database without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Paystack is a payment gateway that allows businesses to accept payments from customers online. It provides a secure and easy-to-use platform for businesses to receive payments from customers using various payment methods such as debit/credit cards, bank transfers, and mobile money. Paystack also offers features such as automated invoicing, subscription billing, and fraud detection to help businesses manage their payments efficiently. With Paystack, businesses can easily integrate payment options into their websites or mobile apps, making it easier for customers to pay for products and services. Paystack is available in Nigeria and Ghana, and it has become a popular payment gateway for businesses in these countries.
Paystack's API provides access to a wide range of data related to payment processing and transactions. The following are the categories of data that Paystack's API gives access to:
1. Transactions: This includes data related to successful and failed transactions, such as transaction ID, amount, status, and date.
2. Customers: This includes data related to customers who have made transactions, such as customer ID, name, email, and phone number.
3. Banks: This includes data related to banks that are supported by Paystack, such as bank name, code, and country.
4. Cards: This includes data related to cards that have been used for transactions, such as card type, last four digits, and expiration date.
5. Subscriptions: This includes data related to recurring payments, such as subscription ID, amount, and frequency.
6. Disputes: This includes data related to disputes raised by customers, such as dispute ID, status, and reason.
7. Refunds: This includes data related to refunds issued to customers, such as refund ID, amount, and date.
Overall, Paystack's API provides comprehensive access to data related to payment processing and transactions, enabling businesses to manage their payments more effectively.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: