Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the required data from Retently. Log into your Retently account and navigate to the data you wish to export. Use the built-in export functionality to download the data in a CSV or Excel format. Ensure that the data includes all necessary fields and that the export is complete.
Once you have the data exported from Retently, inspect the CSV or Excel file to ensure it is correctly formatted. Check for any inconsistencies or errors in the data, such as missing values or incorrect data types. Clean and preprocess the data as needed, ensuring it aligns with the schema you plan to use in Snowflake.
Log into your Snowflake account. If you do not have an account, you will need to create one. Ensure you have the necessary permissions to create new databases and tables, and to upload data to Snowflake.
Using the Snowflake web interface or SQL commands, create a new database and table that will hold the data from Retently. Define the table schema to match the structure of your exported data. For example, use SQL commands like `CREATE DATABASE` and `CREATE TABLE` to set up the storage structure.
Before loading the data into the Snowflake table, you must upload it to a Snowflake stage. Use Snowflake's web interface or the SnowSQL command-line client to upload your CSV or Excel file to a stage. An example command using SnowSQL is: `PUT file:///path/to/your/file.csv @your_stage;`.
With the data staged, use the `COPY INTO` command to move the data from the stage to your Snowflake table. This command reads the data from the stage and inserts it into the table you created. Ensure your `COPY INTO` command includes any necessary options for handling headers or data formatting.
After loading the data, run queries to verify that the data in your Snowflake table matches the original data from Retently. Check for any discrepancies or data integrity issues. You can use SQL `SELECT` queries to perform these checks. Make any necessary adjustments if you find issues during verification.
This process ensures a direct and manual transfer of data from Retently to Snowflake without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Retently is a tool for measuring and increasing customer satisfaction and loyalty through Net Promoter Score surveys and collecting feedback and The tool is packed with various robust features to help you segment your audience, create custom polls, and collect multichannel polls. With Retently, businesses can collect customer feedback and analyze the results with advanced analytics and reports for corrective action. Retently's cloud-based platform is designed to help businesses track their Net Promoter Score, collect valuable customer reviews, and build customer loyalty by converting detractors into repeat customers.
Retently's API provides access to various types of data related to customer feedback and satisfaction. The categories of data that can be accessed through Retently's API include:
1. Customer feedback data: This includes data related to customer feedback, such as NPS scores, customer comments, and ratings.
2. Customer satisfaction data: This includes data related to customer satisfaction, such as customer satisfaction scores, customer loyalty, and customer retention rates.
3. Customer behavior data: This includes data related to customer behavior, such as customer purchase history, customer demographics, and customer preferences.
4. Campaign data: This includes data related to Retently's campaigns, such as campaign performance metrics, campaign engagement rates, and campaign conversion rates.
5. User data: This includes data related to Retently's users, such as user activity, user preferences, and user engagement.
Overall, Retently's API provides access to a wide range of data related to customer feedback and satisfaction, which can be used to improve customer experience and drive business growth.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





