

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing RingCentral's API to extract the necessary data. You'll need to register an application on the RingCentral Developer platform to obtain API credentials (client ID and secret). Use these credentials to authenticate your requests. Utilize the API to fetch data like call logs, messages, etc., in a format such as JSON or CSV.
Prepare a local environment to process the extracted data. Install necessary tools like Python, Node.js, or any other programming language you're comfortable with. Ensure you have libraries or modules for handling HTTP requests (e.g., `requests` for Python) and data manipulation (e.g., `pandas` for Python).
Once the data is extracted, transform it into a format that ClickHouse can consume. This typically involves converting JSON or CSV data into a tabular format. Use your preferred programming language to parse the data and output it as CSV or TSV files, which are natively supported by ClickHouse.
Install the ClickHouse client on your local machine. This will allow you to interact with your ClickHouse server directly from the command line. You can download the client from the official ClickHouse website and follow the installation instructions for your specific operating system.
Before importing data, create a table in ClickHouse to hold the data. Use the ClickHouse client to connect to your database and execute a `CREATE TABLE` statement. Ensure the table schema matches the format of the data you transformed in the previous step.
Use the ClickHouse client to import your transformed data files into the ClickHouse table. You can use the `clickhouse-client` command with `--query "INSERT INTO table_name FORMAT CSV"` to load data from CSV files. Ensure that the data types in your CSV match those expected by the ClickHouse table schema.
After importing, run queries on your ClickHouse database to verify that the data was imported correctly. Compare sample records between your original RingCentral data and the ClickHouse table to ensure completeness and accuracy. Use ClickHouse's querying capabilities to perform data validation checks.
By following these steps, you can manually move data from RingCentral to ClickHouse without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
RingCentral is a cloud-based communication and collaboration platform that provides businesses with a range of tools to manage their communication needs. The platform offers features such as voice and video conferencing, messaging, team collaboration, and online meetings. It also provides a virtual phone system that allows businesses to manage their phone calls, voicemails, and faxes from a single platform. RingCentral is designed to help businesses improve their communication and collaboration, increase productivity, and reduce costs. The platform is scalable and can be customized to meet the specific needs of businesses of all sizes and industries.
RingCentral's API provides access to a wide range of data related to communication and collaboration. The following are the categories of data that can be accessed through RingCentral's API:
1. User data: This includes information about users such as their name, email address, phone number, and extension.
2. Call data: This includes information about calls such as call duration, call type, call recording, and call history.
3. Message data: This includes information about messages such as message content, message type, message status, and message history.
4. Meeting data: This includes information about meetings such as meeting details, meeting participants, and meeting history.
5. Fax data: This includes information about faxes such as fax content, fax status, and fax history.
6. Presence data: This includes information about a user's availability status, such as whether they are available, busy, or offline.
7. Account data: This includes information about the RingCentral account, such as account settings, billing information, and usage statistics.
Overall, RingCentral's API provides access to a comprehensive set of data that can be used to build powerful communication and collaboration applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: