

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing the TikTok for Business API. You need to have a TikTok for Business account with the necessary permissions to access the API. Obtain your API key and secret, which will be required for authentication and making API calls.
Use the API key and secret to authenticate your requests. TikTok's API typically uses OAuth for authentication. Ensure you understand the authentication process, generate an access token, and include it in the headers of your HTTP requests to the TikTok API.
Make HTTP GET requests to the relevant TikTok for Business API endpoints to fetch the marketing data you need. This may include campaign performance data, audience metrics, and ad insights. Ensure you handle pagination if the data set is large, and parse the JSON response to extract the required information.
Once you have the data, transform it into a format compatible with DynamoDB. DynamoDB requires data to be in a key-value structure, typically using JSON. Ensure each record includes a primary key, which is necessary for DynamoDB tables.
Install and configure Boto3, the AWS SDK for Python, which will allow you to interact with DynamoDB. Ensure your AWS credentials are configured properly, either by setting environment variables or using the AWS credentials file.
If not already done, create a DynamoDB table where you will store your TikTok data. Define the primary key and any other necessary attributes. Use the AWS Management Console, AWS CLI, or Boto3 to create the table, ensuring the provisioned throughput matches your expected read/write demands.
Use Boto3 to insert the transformed data into your DynamoDB table. Utilize the `put_item` or `batch_write_item` methods for inserting single or multiple items, respectively. Ensure you handle exceptions and errors, such as provisioned throughput exceeded exceptions, by implementing exponential backoff or retries as necessary.
By following these steps, you can systematically move data from TikTok for Business Marketing to DynamoDB without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
TikTok for Business provides a rich analytics data source for companies seeking to understand consumer behavior and trends. With billions of daily video views and interactions, TikTok offers invaluable insights into audience preferences, content resonance, and engagement patterns. Businesses can leverage TikTok's built-in analytics tools to access granular data on video performance metrics, audience demographics, content categorizations, and more. This data can fuel advanced analytics initiatives, machine learning models, and data-driven decision-making processes. TikTok's APIs enable developers to integrate the platform's data with their existing analytics infrastructures, facilitating custom analyses and data blending with other sources.
TikTok for Business Marketing's API provides access to a wide range of data that can be used to optimize marketing campaigns and improve audience engagement. The types of data that can be accessed through the API can be categorized as follows:
1. User data: This includes information about TikTok users, such as their age, gender, location, interests, and behavior on the platform.
2. Content data: This includes information about the content that is being shared on TikTok, such as the number of views, likes, comments, and shares.
3. Ad performance data: This includes information about the performance of ads on TikTok, such as the number of impressions, clicks, and conversions.
4. Campaign data: This includes information about the performance of marketing campaigns on TikTok, such as the number of impressions, clicks, and conversions.
5. Trend data: This includes information about the latest trends on TikTok, such as popular hashtags, challenges, and music.
Overall, the TikTok for Business Marketing API provides a wealth of data that can be used to create more effective marketing campaigns and engage with audiences in a more meaningful way.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: