

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by familiarizing yourself with both Twilio TaskRouter's API and ClickHouse's HTTP interface. Review the API documentation for both platforms to understand data structures, endpoints, authentication methods, and available operations. This foundational knowledge is crucial for effectively retrieving and inserting data.
Create a secure environment where you can run scripts or applications. This could be a local machine or a dedicated server with internet access. Ensure your environment has Python or another programming language installed that supports HTTP requests, as you'll use this to interact with APIs.
Use Twilio's Account SID and Auth Token to authenticate API requests. Write a script to request data from Twilio TaskRouter, such as worker statistics or task queues, using the Twilio REST API. Make sure to handle authentication in your script securely, avoiding hardcoding sensitive credentials.
Develop a script that sends HTTP GET requests to the appropriate TaskRouter endpoints to retrieve the desired data. Parse the JSON response into a format suitable for processing. Consider implementing pagination if the dataset is large, as Twilio may limit the number of records per request.
Transform the JSON data retrieved from Twilio into a format suitable for ClickHouse. This typically involves converting JSON to CSV or another flat format that ClickHouse can handle efficiently. Pay attention to data types and ensure field names match the schema of your ClickHouse table.
Use ClickHouse's HTTP interface to send the formatted data to your ClickHouse instance. Write an HTTP POST request from your script to insert data into the appropriate table. Utilize ClickHouse's CSV format or another supported format to ensure correct data ingestion.
Once your data extraction and insertion scripts are functioning correctly, automate the process using a task scheduler like cron (on Unix-like systems) or Task Scheduler (on Windows). Set up a schedule that aligns with your data update requirements, ensuring that data is regularly synchronized between Twilio TaskRouter and ClickHouse.
By following these steps, you can effectively move data from Twilio TaskRouter to a ClickHouse warehouse without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Twilio Taskrouter is a cloud-based platform that enables businesses to manage and route tasks to the right agents or employees. It allows companies to create customized workflows and rules to ensure that tasks are assigned to the most appropriate person based on their skills, availability, and other criteria. Taskrouter can be integrated with various communication channels such as voice, SMS, and chat, enabling agents to handle tasks across multiple channels. The platform also provides real-time monitoring and reporting, allowing businesses to track performance and make data-driven decisions to improve their operations. Overall, Twilio Taskrouter helps businesses streamline their task management processes and improve customer experience.
Twilio Taskrouter's API provides access to various types of data related to the management of tasks and workers in a contact center environment. The following are the categories of data that can be accessed through the API:
1. Task-related data: This includes information about the tasks that are created, assigned, and completed by workers. It includes details such as task attributes, task status, task priority, and task assignment.
2. Worker-related data: This includes information about the workers who are available to handle tasks. It includes details such as worker attributes, worker status, worker availability, and worker skills.
3. Workspace-related data: This includes information about the contact center environment, such as the configuration of queues, routing rules, and workflows.
4. Event-related data: This includes information about the events that occur in the contact center environment, such as task creation, task assignment, and task completion.
5. Metrics-related data: This includes information about the performance of the contact center environment, such as the number of tasks handled, the average handle time, and the service level.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: