

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To start, log in to your Zenefits account and navigate to the section where the data you need is located. Use Zenefits' built-in export functionality to download your data. Typically, Zenefits allows data export in CSV format, which is suitable for manual data processing.
Once you've exported your data from Zenefits, open the CSV files using a spreadsheet application like Excel or Google Sheets. Inspect the data for completeness and accuracy, ensuring that there are no missing or corrupt entries. Make any necessary adjustments to match the structure of your MySQL database schema.
Ensure that your MySQL database is properly configured to receive the data. If you haven't already, create a database and the necessary tables that match the structure of your CSV files. Use SQL commands in a MySQL client like MySQL Workbench or the command line to define the tables' columns and data types.
Convert your CSV file into a format that MySQL can process. Ensure that the data types in your CSV match those in your MySQL tables. Pay special attention to date formats, number precision, and string escaping to avoid errors during import.
Use the MySQL `LOAD DATA INFILE` command to import your CSV data into the MySQL tables. This command allows you to specify the file location, delimiters, and other parameters to match your CSV structure. Execute the command in your MySQL client, pointing to the local path of your CSV file.
Example:
```sql
LOAD DATA LOCAL INFILE '/path/to/your/file.csv'
INTO TABLE your_table_name
FIELDS TERMINATED BY ','
ENCLOSED BY '"'
LINES TERMINATED BY '\n'
IGNORE 1 ROWS;
```
After importing the data, verify that it has been correctly inserted into your MySQL tables. Run `SELECT` queries to check for missing or incorrectly formatted data. Compare row counts and sample entries between your CSV file and the MySQL table to ensure accuracy.
To simplify future data transfers, consider writing a script in a programming language such as Python or Bash that automates the CSV download, preparation, and import process. This can include using the `LOAD DATA INFILE` command within the script to streamline the workflow and reduce manual intervention.
By following these steps, you can manually transfer data from Zenefits to a MySQL database without relying on third-party tools, ensuring control over the data migration process.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Zenefits which is an award-winning People Ops Platform that makes it is easy to operate your employee documents, benefits, Human Resource management, Human Resource Accounting, payroll, duration and presence. Zenefits is an entirely Digital Human Resource platform for small and medium businesses. It is also a user-friendly Human Resource software platform which renders strong features based on benefits administration and Human Resource support.
Zenefits's API provides access to a wide range of data related to HR, payroll, benefits, and compliance. The following are the categories of data that can be accessed through Zenefits's API:
1. Employee data: This includes information about employees such as their name, contact details, employment status, job title, and compensation.
2. Benefits data: This includes information about the benefits offered to employees such as health insurance, dental insurance, vision insurance, and retirement plans.
3. Payroll data: This includes information about employee salaries, wages, and deductions.
4. Time and attendance data: This includes information about employee work hours, time off requests, and attendance records.
5. Compliance data: This includes information about compliance requirements such as tax filings, labor laws, and regulations.
6. Performance data: This includes information about employee performance such as performance reviews, goals, and feedback.
7. Onboarding data: This includes information about the onboarding process for new employees such as background checks, employment agreements, and orientation materials.
Overall, Zenefits's API provides access to a comprehensive set of HR-related data that can be used to streamline HR processes and improve employee management.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: