Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by setting up access to the Amazon Seller Partner API. You'll need to create a developer account and register your application to obtain API keys. Once you have access, use the API to extract the data you need, such as sales reports or inventory data, by making HTTP requests to the relevant endpoints. Ensure you handle authentication using AWS Signature Version 4.
Once you've successfully extracted data via the API, format it into a structured format suitable for Redshift loading. JSON is commonly used, but CSV or Parquet might be more efficient depending on your data size and complexity. Organize the data to match the Redshift table schema to streamline the loading process.
Move the formatted data into an Amazon S3 bucket. This is a crucial step as Redshift can efficiently load data from S3. Use the AWS SDK or CLI to upload your data files to S3. Consider organizing your S3 bucket with a logical folder structure to maintain data organization and ease of access.
If you haven't already set up a Redshift cluster, do so now. Configure the cluster based on your performance and storage needs. Ensure that network settings, such as VPC and security groups, are correctly configured to allow access from your workstation and S3.
Define the schema of the tables in Redshift that will store your data. Use SQL CREATE TABLE statements in Redshift to create tables that match the structure of the data stored in S3. Pay particular attention to data types and constraints to ensure data integrity.
Use the Redshift COPY command to load data from your S3 bucket into the Redshift tables. The COPY command is optimized for high performance and can handle large volumes of data efficiently. Make sure to specify the correct file format and delimiters, and include IAM role credentials for S3 access.
After loading the data, verify that the data in Redshift matches what you expect by running SQL queries to check row counts and data integrity. Once verified, consider deleting the intermediate data files from S3 to save on storage costs, unless you need to keep them for backup or audit purposes. Regularly monitor and maintain your Redshift cluster for performance and cost-effectiveness.
By following these steps, you can efficiently move data from Amazon Seller Partner to Amazon Redshift without relying on any third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Amazon Selling Partner’s API (SP-API) is a much-improved iteration of Amazon Marketplace Web Service (Amazon MWS) APIs. This next generation suite offers increased automation functionality, with many new features including state-of-the-art JSON-based REST API design standards and 0Auth2.0 selling partner authorization using Login with Amazon. With this generation of updates, Amazon Selling Partners continues to deliver reliable programmatic access to essential Amazon features, in the same tradition their customers have come to expect for over 10 years.
Amazon Seller Partner's API provides access to a wide range of data related to Amazon seller accounts. The API allows developers to retrieve data related to orders, products, inventory, and pricing. Here are the categories of data that the API provides access to:
1. Orders: The API provides access to order details such as order ID, order status, shipping address, payment information, and order items.
2. Products: The API provides access to product details such as product ID, product title, product description, product images, and product variations.
3. Inventory: The API provides access to inventory details such as inventory levels, inventory status, and inventory updates.
4. Pricing: The API provides access to pricing details such as product prices, discounts, and promotions.
5. Fulfillment: The API provides access to fulfillment details such as shipment tracking information, shipping labels, and fulfillment status.
6. Reports: The API provides access to various reports such as sales reports, inventory reports, and financial reports.
Overall, the Amazon Seller Partner's API provides a comprehensive set of data that can help sellers manage their Amazon business more effectively.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: