Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, log in to your BambooHR account. Navigate to the "Reports" section or the specific area where the data you need is stored (e.g., employee information). Use the export function to download the data in a format that is compatible with spreadsheets, such as CSV or Excel. Save this file securely on your local machine.
Open the exported file using a spreadsheet program like Microsoft Excel or Google Sheets. Review the data to ensure it contains all the necessary fields and is free from errors. Clean up any inconsistencies or redundant information. Ensure that column headers are clearly labeled for easy mapping to Convex.
Access Convex and familiarize yourself with its data structure. Understand the fields and data types required. This might involve reviewing the documentation or schema within Convex to ensure you know where and how to input data. Make a note of any mandatory fields that need to be populated.
Create a mapping document that aligns the fields from your BambooHR export to the corresponding fields in Convex. This step is crucial to ensure data integrity and that each piece of information is correctly placed. Consider using a simple spreadsheet to list BambooHR fields in one column and their Convex counterparts in another.
Depending on the data types and formats used by Convex, you may need to convert certain data points from BambooHR. For example, date formats, phone number styles, or boolean values might need adjusting. Use your spreadsheet program to perform these conversions, ensuring compatibility with Convex's requirements.
Log in to your Convex account. Using the mapping document as a reference, manually input the data into the relevant sections of Convex. This could be done by copying and pasting data into a web form or using the platform"s data entry tools. Be meticulous to avoid errors during this process.
Once all data has been entered into Convex, perform a thorough verification. Check that all fields are correctly populated and that there are no discrepancies between the original BambooHR data and what is now in Convex. Perform spot checks and use any available validation tools within Convex. Make any necessary corrections promptly to ensure data accuracy.
By following these steps, you can successfully move your data from BambooHR to Convex without relying on third-party tools.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
BambooHR is a cloud-based human resources software that helps small and medium-sized businesses manage their HR processes. It offers a range of features including applicant tracking, onboarding, time-off tracking, performance management, and reporting. The software is designed to streamline HR tasks, reduce paperwork, and improve communication between HR and employees. BambooHR also provides a mobile app for employees to access their HR information on-the-go. The software is user-friendly and customizable, allowing businesses to tailor it to their specific needs. Overall, BambooHR aims to simplify HR management and improve the employee experience.
BambooHR's API provides access to a wide range of HR-related data, including:
- Employee data: This includes information about individual employees, such as their name, job title, department, and contact details.
- Time off data: This includes information about employees' time off requests, including the type of leave requested, the dates requested, and the status of the request.
- Benefits data: This includes information about employees' benefits packages, such as their health insurance coverage, retirement plans, and other perks.
- Payroll data: This includes information about employees' compensation, such as their salary, bonuses, and other forms of payment.
- Performance data: This includes information about employees' performance reviews, goals, and other metrics related to their job performance.
- Recruitment data: This includes information about job openings, candidates, and the hiring process.
Overall, BambooHR's API provides a comprehensive set of data that can be used to manage and optimize various aspects of HR operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





