

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, ensure you have access to the BambooHR API. You'll need an API key, which can be generated by an administrator in the BambooHR account. This key will allow you to authenticate and interact with BambooHR's data programmatically.
Use the BambooHR API to extract the data you need. You can do this by making HTTP GET requests to the appropriate endpoints. For example, to get employee data, you would access the `/employees` endpoint. Use tools like `curl` or write scripts in languages such as Python using libraries like `requests` to automate data extraction.
Once you have extracted the data, transform it into JSON format if it isn’t already. Elasticsearch requires data to be in JSON format for ingestion. You may need to parse XML or CSV if your data is returned in those formats and convert it into JSON. This can be achieved using various programming languages or tools like Python with the `json` module.
If you haven’t already, install Elasticsearch on your server or local machine. Download the appropriate version from the official Elasticsearch website and follow the installation instructions for your operating system. Configure Elasticsearch by editing the `elasticsearch.yml` file to set necessary parameters like cluster name and network settings.
Before importing data, create an index in Elasticsearch that will store the data. Use the Elasticsearch HTTP API to create an index by making a PUT request to the `/index_name` endpoint. Define the index mappings if necessary, which will help Elasticsearch understand the structure and data types of your incoming data.
Develop a script to load your transformed JSON data into Elasticsearch. You can use Python with the `elasticsearch` library or another language of your choice. The script should read the JSON data and use the Elasticsearch Bulk API to efficiently index the data into your created index. Make sure to handle any errors and ensure that the data is being indexed correctly.
Once the data has been loaded, verify that it has been indexed correctly. Use the Elasticsearch API to perform queries on your data, ensuring that all records have been imported and are accessible. You can use tools like Kibana for a more visual confirmation or run queries directly using Elasticsearch’s RESTful API.
By following these steps, you can manually move data from BambooHR to Elasticsearch without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
BambooHR is a cloud-based human resources software that helps small and medium-sized businesses manage their HR processes. It offers a range of features including applicant tracking, onboarding, time-off tracking, performance management, and reporting. The software is designed to streamline HR tasks, reduce paperwork, and improve communication between HR and employees. BambooHR also provides a mobile app for employees to access their HR information on-the-go. The software is user-friendly and customizable, allowing businesses to tailor it to their specific needs. Overall, BambooHR aims to simplify HR management and improve the employee experience.
BambooHR's API provides access to a wide range of HR-related data, including:
- Employee data: This includes information about individual employees, such as their name, job title, department, and contact details.
- Time off data: This includes information about employees' time off requests, including the type of leave requested, the dates requested, and the status of the request.
- Benefits data: This includes information about employees' benefits packages, such as their health insurance coverage, retirement plans, and other perks.
- Payroll data: This includes information about employees' compensation, such as their salary, bonuses, and other forms of payment.
- Performance data: This includes information about employees' performance reviews, goals, and other metrics related to their job performance.
- Recruitment data: This includes information about job openings, candidates, and the hiring process.
Overall, BambooHR's API provides a comprehensive set of data that can be used to manage and optimize various aspects of HR operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





