

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by ensuring that your CockroachDB environment is properly set up. This includes having access to your CockroachDB instance and being able to connect to it via a SQL client or CockroachDB's built-in SQL shell. Verify that you have the necessary permissions to read the data you intend to transfer.
Use SQL queries to extract the data you need from CockroachDB. You can do this by running `SELECT` statements to retrieve the desired datasets. If needed, export the data to a CSV or JSON file format using CockroachDB’s export capabilities, which can help simplify the data transfer process.
Once you have exported the data, inspect the CSV or JSON files to ensure they are formatted correctly and contain all necessary fields. Clean and normalize the data as needed to ensure compatibility with the Convex data structure. This step is crucial to avoid data type mismatches or errors during import.
Set up your Convex environment by creating a new project or accessing an existing one. Ensure that you have the necessary permissions to insert data into the Convex database. Familiarize yourself with Convex’s data schema and any specific formatting requirements.
Modify your data to match the schema and data types expected by Convex. This may involve restructuring JSON objects or adjusting field names and data types. Ensure that the data adheres to any constraints or requirements defined in your Convex schema.
Write scripts or use Convex’s API to insert the prepared data into your Convex database. This can be done using HTTP requests if Convex offers a RESTful API, or by utilizing any available command-line tools provided by Convex. Test the data insertion with a small subset of your data first to ensure the process works smoothly.
After the data has been inserted into Convex, perform thorough checks to verify the data integrity and completeness. Compare a sample of the data in Convex with the original data in CockroachDB to ensure accuracy. Make any necessary adjustments if discrepancies are found, and repeat the data transfer process for any remaining datasets.
By following these steps, you can manually transfer data from CockroachDB to Convex without the need for third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Self-proclaimed “The most highly evolved database on the planet,” Cockroachdb helps businesses “scale fast,” “survive anything,” and “thrive anywhere.” Cockroachdb makes it easy for businesses to scale their database quickly and automatically and can be used across multiple cloud platforms or hybridized across clouds and on-prem data centers. They service all sizes of brands, including major companies such as Bose, Comcast and Equifax, providing easy backup, multi-platform deployment, and secure and scalable data storage and retrieval.
CockroachDB gives access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables and columns, such as customer information, product details, and transaction records.
2. Unstructured data: This includes data that does not have a predefined structure, such as text documents, images, and videos.
3. Time-series data: This includes data that is collected over time and is typically used for analysis and forecasting, such as stock prices, weather data, and sensor readings.
4. Geospatial data: This includes data that is related to geographic locations, such as maps, GPS coordinates, and address information.
5. Machine-generated data: This includes data that is generated by machines and devices, such as log files, system metrics, and IoT sensor data.
6. User-generated data: This includes data that is created by users, such as social media posts, comments, and reviews.
Overall, CockroachDB's API provides access to a wide range of data types, making it a versatile and powerful tool for developers and data analysts.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: