Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by reviewing DataDog's documentation to understand how you can export the data you need. DataDog allows data export through their API, so you'll need to familiarize yourself with the API endpoints and the specific data formats available for export. Identify the metrics, logs, or traces you wish to transfer to TiDB.
To access DataDog's API, you need an API key and an application key. Log into your DataDog account and navigate to the API section under the Integrations tab. Generate the necessary keys and ensure they have the right permissions to access the data you intend to export.
Write a script in a programming language such as Python, JavaScript, or Ruby, to extract data from DataDog. Use HTTP requests to interact with DataDog's API, paginate through the results if necessary, and handle authentication using the API and application keys. Ensure your script can output data in a structured format like JSON or CSV.
Ensure you have a TiDB cluster set up and accessible. Install any necessary client tools that will allow you to interact with TiDB from your local environment. Configure the TiDB server to accept connections from your machine or server where the script will run.
Design the schema within TiDB that will hold the data coming from DataDog. This may involve creating tables that reflect the structure of your data. Adjust the script to transform the exported data into SQL insert statements, or modify your data format to match TiDB's requirements.
Extend your script to connect to TiDB and insert the transformed data. Use TiDB's native client libraries or execute SQL commands directly via a command-line tool like `mysql` compatible with TiDB. Ensure that you handle potential errors in data insertion and implement logging for monitoring the process.
Run your script to verify that the data is correctly exported from DataDog and imported into TiDB. Check the data integrity and consistency. Once verified, schedule the script using a cron job or any other scheduling tool to automate the process at regular intervals, ensuring data in TiDB remains updated with minimal manual intervention.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Datadog is a monitoring and analytics tool for information technology (IT) and DevOps teams that can be used for performance metrics as well as event monitoring for infrastructure and cloud services. The software can monitor services such as servers, databases and appliances Datadog monitoring software is available for on-premises deployment or as Software as a Service (SaaS). Datadog supports Windows, Linux and Mac operating systems. Support for cloud service providers includes AWS, Microsoft Azure, Red Hat OpenShift, and Google Cloud Platform.
Datadog's API provides access to a wide range of data related to monitoring and analytics of IT infrastructure and applications. The following are the categories of data that can be accessed through Datadog's API:
1. Metrics: Datadog's API provides access to a vast collection of metrics related to system performance, network traffic, application performance, and more.
2. Logs: The API allows users to retrieve logs generated by various applications and systems, which can be used for troubleshooting and analysis.
3. Traces: Datadog's API provides access to distributed traces, which can be used to identify performance bottlenecks and optimize application performance.
4. Events: The API allows users to retrieve events generated by various systems and applications, which can be used for alerting and monitoring purposes.
5. Dashboards: Users can retrieve and manage dashboards created in Datadog, which can be used to visualize and analyze data from various sources.
6. Monitors: The API allows users to create, update, and manage monitors, which can be used to alert on specific conditions or events.
7. Synthetic tests: Datadog's API provides access to synthetic tests, which can be used to simulate user interactions with applications and systems to identify performance issues.
Overall, Datadog's API provides a comprehensive set of data that can be used to monitor and optimize IT infrastructure and applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





