Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your Drift account. Navigate to the data export section available under your account settings or data management options. Export the necessary data, such as chat transcripts, contact lists, or user data, into a CSV or Excel file format. Ensure that you select all the relevant fields you need to import into Convex.
Open the exported data files and clean them up as needed. Remove any unnecessary columns or rows that won't be required in Convex. Standardize the format of the data for consistency, and make sure that all fields are correctly labeled and organized for easy mapping to Convex’s data structure.
Log into your Convex account and access the database or module where you intend to import the data. Ensure you have the necessary permissions to add or modify data within the system. Familiarize yourself with Convex’s data import capabilities, including any templates or format requirements.
Create a mapping document that aligns the Drift data fields with the corresponding fields in Convex. This will serve as a guide to ensure each piece of data is correctly migrated into the right place. Take note of any data type conversions that may be necessary, such as changing text fields to numerical values or date formats.
Using a spreadsheet application or a scripting language (such as Python or Excel VBA), transform the Drift data to fit Convex’s required format. This may involve renaming columns, reformatting data types, or splitting/combining fields. Save the file in the format accepted by Convex (e.g., CSV, Excel).
Use Convex’s built-in import functionality to upload the prepared data file. Follow the prompts to map your prepared fields with Convex’s database fields as per your mapping document. Carefully review the import settings to ensure data integrity and accuracy during the process.
Once the import is complete, verify the data within Convex to ensure that everything was imported correctly. Check for any discrepancies or errors in the data. Validate that all records are complete and accurate, and conduct a sample verification by comparing a few records between Drift and Convex to ensure consistency.
By following these steps, you can effectively move data from Drift to Convex without the need for third-party tools, ensuring a smooth and accurate data migration process.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Advertised as the “First and only revenue acceleration platform,” Drift provides an array of conversational tools in one place. Live chat, email, video, virtual selling assistants, Drift intel and prospector, and more are all smoothly integrated for a seamless and frictionless communication experience. Putting the personal touch back in marketing, Drift’s Conversational Marketing and Conversational Sales helps companies personalize business/client encounters and grow revenue faster.
Drift's API provides access to a wide range of data related to customer interactions and conversations. The following are the categories of data that can be accessed through Drift's API:
1. Conversations: This includes data related to all conversations between customers and agents, including conversation history, transcripts, and metadata.
2. Contacts: This includes data related to customer profiles, such as contact information, company details, and activity history.
3. Events: This includes data related to customer behavior, such as page views, clicks, and other actions taken on the website.
4. Campaigns: This includes data related to marketing campaigns, such as email campaigns, chat campaigns, and other promotional activities.
5. Integrations: This includes data related to third-party integrations, such as CRM systems, marketing automation tools, and other business applications.
6. Analytics: This includes data related to performance metrics, such as conversion rates, engagement rates, and other key performance indicators.
Overall, Drift's API provides a comprehensive set of data that can be used to gain insights into customer behavior, improve customer engagement, and optimize business processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: