

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before beginning the data transfer, ensure that your source Elasticsearch cluster is running smoothly. Verify that all indices are in a healthy state using the `_cat/indices` API. This will help prevent issues during data export.
Use Elasticsearch's built-in snapshot and restore functionality. Create a snapshot repository on the source cluster by setting up a shared file system or using a cloud-based storage option supported by Elasticsearch (like AWS S3, GCS, etc.). Register the repository with the `_snapshot` API and initiate a snapshot of the indices you wish to transfer.
Ensure that your target cluster has access to the snapshot repository. If you're using a shared file system, both clusters need access to the same filesystem. For cloud-based storage, ensure the target cluster has the necessary credentials and permissions to access the snapshot data.
Before restoring data, ensure that the target Elasticsearch cluster is set up and configured properly. Check the cluster's health, and confirm that it has enough resources (disk space, memory, etc.) to accommodate the incoming data. Adjust any settings as needed to optimize for the restore process.
On the target cluster, use the `_snapshot` API to register the same snapshot repository used in the source cluster. This allows the target cluster to access the snapshots directly from the shared storage location.
Use the `_snapshot` API on the target cluster to restore the desired snapshots. You can choose to restore specific indices or all indices within the snapshot. Monitor the restore process using the Elasticsearch APIs to ensure it completes successfully and troubleshoot any issues that arise.
After the data restore process is complete, perform checks to verify data integrity. Compare document counts and sample data between the source and target clusters. Additionally, run performance tests on the target cluster to ensure that it meets your operational needs and make any necessary adjustments.
This guide ensures a smooth and efficient data transfer process between two Elasticsearch clusters using Elasticsearch's built-in features without relying on external tools.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Elasticsearch is a distributed search and analytics engine for all types of data. Elasticsearch is the central component of the ELK Stack (Elasticsearch, Logstash, and Kibana).
Elasticsearch's API provides access to a wide range of data types, including:
1. Textual data: Elasticsearch can index and search through large volumes of textual data, including documents, emails, and web pages.
2. Numeric data: Elasticsearch can store and search through numeric data, including integers, floats, and dates.
3. Geospatial data: Elasticsearch can store and search through geospatial data, including latitude and longitude coordinates.
4. Structured data: Elasticsearch can store and search through structured data, including JSON, XML, and CSV files.
5. Unstructured data: Elasticsearch can store and search through unstructured data, including images, videos, and audio files.
6. Log data: Elasticsearch can store and search through log data, including server logs, application logs, and system logs.
7. Metrics data: Elasticsearch can store and search through metrics data, including performance metrics, network metrics, and system metrics.
8. Machine learning data: Elasticsearch can store and search through machine learning data, including training data, model data, and prediction data.
Overall, Elasticsearch's API provides access to a wide range of data types, making it a powerful tool for data analysis and search.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: