Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by setting up access to the GitLab API. Go to your GitLab account, navigate to the settings, and generate a personal access token. This token will allow you to authenticate API requests to access your repositories and the data within them. Make sure to store the token securely, as it will be needed for subsequent API requests.
Determine the specific data you want to move from GitLab to MongoDB. This could include repository metadata, commit histories, issues, or other project data. Clearly defining the data scope will help in crafting precise API calls and structuring your MongoDB collections.
Use the GitLab API to fetch the data identified in the previous step. You can use tools like `curl` or write scripts in languages such as Python or Node.js to make HTTP requests to the API endpoints. For example, to get project data, you might send a GET request to `https://gitlab.com/api/v4/projects/:id`. Ensure you include your personal access token in the request headers for authentication.
Once you have the data from GitLab, process and format it to match MongoDB's document structure. Convert the JSON responses from the API into a format compatible with MongoDB collections. This might involve restructuring nested data or converting data types to fit MongoDB's BSON format.
Prepare your MongoDB environment for data insertion. This involves either setting up a new MongoDB instance or ensuring your existing instance is ready to receive new data. Create the necessary databases and collections that will store the GitLab data. For example, you might create a collection named `gitlab_projects` to store project data.
With your data formatted and MongoDB set up, proceed to insert the data into the designated collections. You can use MongoDB's native drivers or libraries in your preferred programming language to insert the data. For example, using Python's `pymongo` library, you can connect to your MongoDB instance and execute insert operations.
After inserting the data, conduct a thorough check to ensure that all data has been transferred accurately and completely. Query the MongoDB collections to verify that the entries match the data retrieved from GitLab. Check for any discrepancies or missing data, and adjust your extraction and insertion scripts as necessary to correct any issues.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
GitLab is web-based Git repository manager. Whereas GitHub emphasizes infrastructure performance, GitLab’s focus is a features-oriented system. As an open-source collaborative platform, it enables developers to create code, review work, and deploy codebases collaboratively. It offers wiki, code reviews, built-in CI/CD, issue-tracking features, and much more.
GitLab's API provides access to a wide range of data related to a user's GitLab account and projects. The following are the categories of data that can be accessed through GitLab's API:
1. User data: This includes information about the user's profile, such as name, email, and avatar.
2. Project data: This includes information about the user's projects, such as project name, description, and visibility.
3. Repository data: This includes information about the user's repositories, such as repository name, description, and access level.
4. Issue data: This includes information about the user's issues, such as issue title, description, and status.
5. Merge request data: This includes information about the user's merge requests, such as merge request title, description, and status.
6. Pipeline data: This includes information about the user's pipelines, such as pipeline status, duration, and job details.
7. Job data: This includes information about the user's jobs, such as job status, duration, and artifacts.
8. Group data: This includes information about the user's groups, such as group name, description, and visibility.
Overall, GitLab's API provides access to a comprehensive set of data that can be used to automate and streamline various aspects of a user's GitLab workflow.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





