Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data from GitLab. Depending on the data type (e.g., issue data, project data), use GitLab's API or built-in export tools. For example, use GitLab's API to extract data in JSON or CSV format. This can be done using a command-line tool like `curl` to make GET requests to a specific GitLab API endpoint and save the response to a local file.
After exporting the data, prepare it for import into TiDB. This involves cleaning the data to ensure it meets TiDB's requirements. Check for any inconsistencies or missing fields and format the data according to how it will be structured in TiDB, typically as CSV files or SQL dump files.
Ensure that your TiDB environment is correctly set up and running. This includes having TiDB, TiKV, and PD components installed and configured on your server. You can follow the official TiDB documentation for setting up a TiDB cluster if it's not already done.
Before importing data, create tables in TiDB that correspond to the structure of your GitLab data. Use a SQL client to connect to your TiDB instance and execute `CREATE TABLE` statements. Define the schema to match the data fields from GitLab, including appropriate data types and constraints.
Convert the prepared data into SQL `INSERT` statements, which can be executed in TiDB. You can write a script in a language like Python to read the CSV or JSON data and output SQL statements. Ensure that each statement accurately reflects the table schema and data types in TiDB.
Use the TiDB command-line tool `mysql` or any SQL client to connect to your TiDB instance and execute the SQL `INSERT` statements. If the data volume is large, consider splitting the data into smaller batches to prevent overwhelming the database server.
After the import process, verify that the data in TiDB matches the original GitLab data. Run queries to check for discrepancies or missing records and ensure all data has been correctly imported. This step is crucial for data consistency and accuracy.
By following these steps, you can manually transfer data from GitLab to TiDB without relying on third-party tools or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
GitLab is web-based Git repository manager. Whereas GitHub emphasizes infrastructure performance, GitLab’s focus is a features-oriented system. As an open-source collaborative platform, it enables developers to create code, review work, and deploy codebases collaboratively. It offers wiki, code reviews, built-in CI/CD, issue-tracking features, and much more.
GitLab's API provides access to a wide range of data related to a user's GitLab account and projects. The following are the categories of data that can be accessed through GitLab's API:
1. User data: This includes information about the user's profile, such as name, email, and avatar.
2. Project data: This includes information about the user's projects, such as project name, description, and visibility.
3. Repository data: This includes information about the user's repositories, such as repository name, description, and access level.
4. Issue data: This includes information about the user's issues, such as issue title, description, and status.
5. Merge request data: This includes information about the user's merge requests, such as merge request title, description, and status.
6. Pipeline data: This includes information about the user's pipelines, such as pipeline status, duration, and job details.
7. Job data: This includes information about the user's jobs, such as job status, duration, and artifacts.
8. Group data: This includes information about the user's groups, such as group name, description, and visibility.
Overall, GitLab's API provides access to a comprehensive set of data that can be used to automate and streamline various aspects of a user's GitLab workflow.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: