Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, you need to set up access to the GitLab API. Navigate to your GitLab account settings and create a personal access token with the necessary permissions to read the data you want to extract. Ensure you have the API scope selected.
Use the GitLab API to extract data. You can do this by sending HTTP requests to the appropriate GitLab API endpoints. For example, if you want to extract issues, use the `/projects/:id/issues` endpoint. Use tools like `curl` or a programming language with HTTP request capabilities (e.g., Python with `requests` library) to fetch the data.
Once you have the data from GitLab, parse it into a format suitable for Firestore. This might involve converting JSON responses into dictionaries or objects, depending on the programming language you're using. Ensure the data structure is compatible with Firestore document fields.
If you haven't already, create a Google Cloud project and enable Firestore. Go to the Google Cloud Console, select "Firestore" from the navigation menu, and choose "Create Database." Follow the prompts to set up Firestore in Native mode.
To interact with Firestore, you'll need to authenticate your application. Download a service account key from the Google Cloud Console. Navigate to "IAM & Admin" > "Service Accounts," select your project, and create a key for a service account with Firestore access. Save the JSON key file securely.
Use Firestore's API to write the parsed data into your database. If you're using Python, for example, the `google-cloud-firestore` library can be used. Authenticate using the service account key, and then create a Firestore client to add documents to your collections. Ensure you map the fields from your parsed data correctly to Firestore document fields.
After writing data to Firestore, verify the integrity and completeness of the data. Use the Firestore console to inspect collections and documents. You can also write scripts to read back the data and compare it with the original data from GitLab to ensure everything has been transferred accurately.
This process should effectively move data from GitLab to Google Firestore without relying on third-party tools. Ensure you handle any sensitive data with care, adhering to best practices for security and privacy.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
GitLab is web-based Git repository manager. Whereas GitHub emphasizes infrastructure performance, GitLab’s focus is a features-oriented system. As an open-source collaborative platform, it enables developers to create code, review work, and deploy codebases collaboratively. It offers wiki, code reviews, built-in CI/CD, issue-tracking features, and much more.
GitLab's API provides access to a wide range of data related to a user's GitLab account and projects. The following are the categories of data that can be accessed through GitLab's API:
1. User data: This includes information about the user's profile, such as name, email, and avatar.
2. Project data: This includes information about the user's projects, such as project name, description, and visibility.
3. Repository data: This includes information about the user's repositories, such as repository name, description, and access level.
4. Issue data: This includes information about the user's issues, such as issue title, description, and status.
5. Merge request data: This includes information about the user's merge requests, such as merge request title, description, and status.
6. Pipeline data: This includes information about the user's pipelines, such as pipeline status, duration, and job details.
7. Job data: This includes information about the user's jobs, such as job status, duration, and artifacts.
8. Group data: This includes information about the user's groups, such as group name, description, and visibility.
Overall, GitLab's API provides access to a comprehensive set of data that can be used to automate and streamline various aspects of a user's GitLab workflow.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: