Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by ensuring your IBM Db2 database is in a stable state by backing up your data. Check for any locks or ongoing transactions that might interfere with the data export. Note the schema structure, data types, and any constraints in your Db2 database that will need to be replicated in TiDB.
Use the Db2 export utility to extract data. You can use the `EXPORT` command to generate delimited files (such as CSV) for each table. This can be done using a command like:
```sql
EXPORT TO 'data.csv' OF DEL SELECT FROM your_table;
```
Ensure that the data types are correctly exported and any special characters are handled properly.
Set up your TiDB environment, ensuring it is properly configured and running. Create the necessary databases and tables in TiDB that match the structure of your Db2 tables. Use TiDB's SQL interface to create tables, ensuring data types and constraints are compatible with TiDB's capabilities.
If necessary, transform the exported data to align with TiDB’s requirements. This might include converting data types, adjusting date formats, or cleaning up any anomalies in the dataset. Use scripting languages like Python or shell scripts to automate this process.
Use TiDB's `LOAD DATA` command to import the cleaned and transformed data into the respective tables. For example:
```sql
LOAD DATA LOCAL INFILE 'data.csv' INTO TABLE your_table FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n';
```
Ensure the data is loaded correctly by checking for any errors or warnings during the import process.
Perform thorough data integrity checks to ensure all data has been accurately transferred. This includes verifying row counts, checking for data corruption, and ensuring constraints like primary keys and foreign keys are intact. Write queries to compare record counts and sample records between Db2 and TiDB.
Once data transfer is complete and verified, optimize your TiDB database for performance. This includes updating statistics, analyzing tables, and configuring indexes to improve query performance. Use TiDB's built-in tools and commands to ensure optimal performance for your specific workload.
By following these steps, you can effectively migrate data from IBM Db2 to TiDB without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Specializing in the development and maintenance of Android, iOS, and Web applications, DB2’s AI technology offers fast insights, flexible data management, and secure data movement to businesses globally through its IBM Cloud Pak for Data platform. Companies rely on DB2’s AI-powered insights and secure platform and save money with its multimodal capability, which eliminates the need for unnecessary replication and migration of data. Additionally, DB2 is convenient and will run on any cloud vendor.
IBM Db2 provides access to a wide range of data types, including:
1. Relational data: This includes tables, views, and indexes that are organized in a relational database management system (RDBMS).
2. Non-relational data: This includes data that is not organized in a traditional RDBMS, such as NoSQL databases, JSON documents, and XML files.
3. Time-series data: This includes data that is collected over time and is typically used for analysis and forecasting, such as sensor data, financial data, and weather data.
4. Geospatial data: This includes data that is related to geographic locations, such as maps, satellite imagery, and GPS coordinates.
5. Graph data: This includes data that is organized in a graph structure, such as social networks, recommendation engines, and knowledge graphs.
6. Machine learning data: This includes data that is used to train machine learning models, such as labeled datasets, feature vectors, and model parameters.
Overall, IBM Db2's API provides access to a diverse range of data types, making it a powerful tool for data management and analysis.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: