Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the desired data from Kyriba. Use Kyriba's built-in data export functionalities to download the data files. Typically, data can be exported in formats such as CSV, Excel, or XML. Ensure that the data is exported in a format compatible with Snowflake and saved securely on your local system or a secure server.
Once exported, inspect the data files to ensure completeness and correctness. Clean and preprocess the data if necessary to fit the schema requirements of Snowflake. This might include formatting dates, ensuring consistent data types, and removing or correcting erroneous entries.
Establish a secure method to transfer the files to a location accessible by Snowflake. Set up an SFTP server if not already available. Ensure that the server is secure and accessible only to authorized personnel. Upload the prepared data files to the SFTP server.
In Snowflake, create an external stage that references the SFTP server location. This involves using Snowflake's `CREATE STAGE` command. Define the stage to point to the directory where the data files are stored, and configure necessary credentials to access the SFTP server securely.
Define the schema in Snowflake where the data will reside. Use the `CREATE TABLE` command to construct tables that match the structure of the data files. Ensure that data types and constraints are correctly defined to facilitate smooth data loading and integrity.
Use Snowflake's `COPY INTO` command to load the data from the staged files into the target tables. This command will read data from the stage and insert it into the table. Monitor the loading process for any errors or issues, and resolve any discrepancies found during the transformation process.
After loading the data, perform data validation to ensure accuracy and integrity. Compare row counts, check for data consistency, and verify that all expected data fields are populated correctly. Execute queries to sample the data and confirm that it aligns with the original source data from Kyriba.
By following these steps, you will successfully transfer data from Kyriba to Snowflake Data Cloud without relying on any third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Kyriba is a global leader in cloud treasury and finance solutions, providing mission-critical capabilities for cash and risk management, payments, and working capital solutions. More than 2,500 clients worldwide rely on Kyriba to view, protect and grow their liquidity. Kyriba has connectivity in its DNA and is driven by research and innovation to uncover new ways to use APIs, artificial intelligence, and predictive analytics to support our customers. It unifies cloud offerings with a truly global community of customers, partners, and talented employees reaching over 100 countries worldwide.
Kyriba's API provides access to a wide range of financial data, including:
1. Cash Management Data: This includes information on cash balances, bank accounts, and transactions.
2. Payment Data: This includes details on payments made and received, including payment method, amount, and date.
3. FX Data: This includes exchange rates and currency conversion information.
4. Risk Management Data: This includes data on financial risks such as market risk, credit risk, and liquidity risk.
5. Treasury Management Data: This includes information on treasury operations such as cash forecasting, cash positioning, and cash pooling.
6. Compliance Data: This includes data on regulatory compliance, such as anti-money laundering (AML) and know your customer (KYC) requirements.
7. Reporting Data: This includes data on financial reporting, such as balance sheets, income statements, and cash flow statements.
Overall, Kyriba's API provides a comprehensive set of financial data that can be used to manage cash, payments, risk, compliance, and reporting.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: