Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before starting, familiarize yourself with LinkedIn's API documentation and data access policies. LinkedIn's API lets you access certain user data programmatically, but it has strict guidelines on what data can be accessed and how it can be used. Ensure you have the necessary permissions and understand the limitations.
Sign up for a LinkedIn Developer account and create a new app. This will provide you with the necessary API keys (Client ID and Client Secret) to authenticate requests. Ensure your app is configured with the correct permissions to access the data you need.
Use OAuth 2.0 to authenticate your app and obtain an access token. Implement the OAuth 2.0 authentication flow by directing users to LinkedIn's authorization endpoint. Once users authorize your app, LinkedIn will redirect them back to your site with an authorization code, which you can exchange for an access token.
With the access token, make REST API requests to LinkedIn to fetch the desired data from pages. This could include company updates, follower statistics, or other available data. Use HTTP GET requests with the appropriate endpoints, ensuring you handle any rate limits imposed by LinkedIn.
Once you have the data, parse the JSON responses to extract the needed information. Structure this data in a way that aligns with your intended DynamoDB schema. Consider the data types and how you will query this data later.
In the AWS Management Console, create a DynamoDB table to store your LinkedIn data. Define the primary key (partition key and optional sort key) based on your data access patterns. Configure the table's read/write capacity units based on your anticipated workload.
Write a script (using a language like Python with Boto3, AWS SDK for JavaScript, etc.) to insert the parsed LinkedIn data into your DynamoDB table. Use the `PutItem` or `BatchWriteItem` operations to write individual items or batches of items efficiently. Handle any errors or exceptions during the write operations to ensure data integrity.
By following these steps, you can manually move data from LinkedIn pages to DynamoDB without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
LinkedIn Pages are a great platform for organizations to post industry updates, job opportunities, information about life at their organization, and much more. LinkedIn Pages can be used by admins and followers when signed in to LinkedIn.com on desktop and mobile devices. A LinkedIn Page permits you to represent your organization on LinkedIn. LinkedIn Pages offer a platform for companies, universities, and high schools to share information about their brand with visitors and followers. A LinkedIn Page assists.
LinkedIn Pages API provides access to a wide range of data related to LinkedIn Pages. The API allows developers to retrieve and manage data related to company pages, including company information, updates, and followers. Here are the categories of data that LinkedIn Pages API provides access to:
1. Company information: This includes basic information about the company, such as name, logo, description, and website URL.
2. Updates: This includes all the updates posted on the company page, including text, images, and videos.
3. Followers: This includes information about the followers of the company page, such as their names, job titles, and locations.
4. Analytics: This includes data related to the performance of the company page, such as engagement metrics, follower growth, and demographics.
5. Employee information: This includes information about the employees of the company, such as their names, job titles, and LinkedIn profiles.
6. Content recommendations: This includes recommendations for content that is likely to perform well on the company page based on LinkedIn's algorithm.
Overall, LinkedIn Pages API provides developers with a comprehensive set of data that can be used to build powerful applications and tools for managing LinkedIn Pages.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





