

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Ensure you have an AWS account with the necessary permissions to create and manage AWS S3 buckets, AWS Glue jobs, and IAM roles. Create an S3 bucket where you will store the data extracted from MongoDB.
Use MongoDB's native tools to export the data to JSON or CSV format. You can use the `mongoexport` command-line tool to accomplish this. For example:
```bash
mongoexport --db yourDatabase --collection yourCollection --out data.json
```
This command will export your desired MongoDB collection into a `data.json` file.
After exporting the MongoDB data, upload it to your S3 bucket. This can be done using the AWS CLI or AWS Management Console. For the AWS CLI, use:
```bash
aws s3 cp data.json s3://your-bucket-name/
```
Ensure that your IAM user or role has the necessary permissions to upload files to the S3 bucket.
Create an IAM role that AWS Glue can assume. This role should have policies that allow it to read from your S3 bucket and write logs to AWS CloudWatch. Attach the `AmazonS3ReadOnlyAccess` and `CloudWatchLogsFullAccess` policies to this role.
In the AWS Glue console, create a new crawler. Configure it to read the data from your S3 bucket where you uploaded the MongoDB JSON/CSV file. This crawler will infer the schema and create a table in the Glue Data Catalog.
Set up a new Glue ETL job in the AWS Glue console. This job will process the data from the Glue Data Catalog table created by your crawler. Configure the job to perform any necessary transformations, or simply to process and store the data in a different format or partition in S3.
Execute the Glue job and monitor its progress through the AWS Glue console. Check CloudWatch logs for any errors or issues during the job execution. Once the job completes successfully, your MongoDB data will be transformed and stored in the desired format and location within your S3 bucket.
By following these steps, you can efficiently move and transform data from MongoDB to AWS S3 using AWS Glue without the need for any third-party connectors.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
MongoDB is a popular open-source NoSQL database that stores data in a flexible, document-based format. It is designed to handle large volumes of unstructured data and is highly scalable, making it a popular choice for modern web applications. MongoDB uses a JSON-like format to store data, which allows for easy integration with web applications and APIs. It also supports dynamic queries, indexing, and aggregation, making it a powerful tool for data analysis. MongoDB is widely used in industries such as finance, healthcare, and e-commerce, and is known for its ease of use and flexibility.
MongoDB gives access to a wide range of data types, including:
1. Documents: MongoDB stores data in the form of documents, which are similar to JSON objects. Each document contains a set of key-value pairs that represent the data.
2. Collections: A collection is a group of related documents that are stored together in MongoDB. Collections can be thought of as tables in a relational database.
3. Indexes: MongoDB supports various types of indexes, including single-field, compound, and geospatial indexes. Indexes are used to improve query performance.
4. GridFS: MongoDB's GridFS is a specification for storing and retrieving large files, such as images and videos, in MongoDB.
5. Aggregation: MongoDB's aggregation framework provides a way to perform complex data analysis operations, such as grouping, filtering, and sorting, on large datasets.
6. Transactions: MongoDB supports multi-document transactions, which allow multiple operations to be performed atomically.
7. Change streams: MongoDB's change streams provide a way to monitor changes to data in real-time, allowing applications to react to changes as they occur.
Overall, MongoDB provides access to a flexible and powerful data model that can handle a wide range of data types and use cases.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: