Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To begin, obtain API access to Recruitee. Log into your Recruitee account, navigate to the settings, and generate an API key. This key will allow you to programmatically access the data within your Recruitee account. Familiarize yourself with the Recruitee API documentation to understand the endpoints available for data extraction.
Install and configure the AWS SDK for the programming language you intend to use (e.g., Python, Node.js, Java). This SDK will enable you to interact with DynamoDB. For Python, for example, you can install `boto3` using pip. Make sure you have AWS credentials set up in your environment to allow access to DynamoDB.
Utilize the Recruitee API to fetch the data you need. You can write a script to make HTTP GET requests to the relevant Recruitee API endpoints, such as those for candidates, jobs, or any other data entities you wish to migrate. Parse the JSON responses and store the data in a suitable data structure within your script.
DynamoDB requires data to be in a specific format and structure. Transform the data extracted from Recruitee into JSON format that aligns with the DynamoDB schema you plan to use. This might include converting data types, renaming fields, or restructuring nested data to fit the table design of DynamoDB.
Before inserting data, ensure your DynamoDB table is set up. Use the AWS Management Console or the AWS SDK to create a DynamoDB table with the necessary primary key schema and any secondary indexes needed for your queries. Define the capacity mode (provisioned or on-demand) based on your expected workload.
Write a script to insert the transformed data into the DynamoDB table. Use the `put_item` method for individual records or `batch_write_item` for multiple records to improve performance. Handle any exceptions or errors in the insertion process, such as duplicate keys or validation errors, to ensure data integrity.
After the data has been inserted, verify the data integrity by querying the DynamoDB table. You can write scripts to perform sample queries and compare them with the original data from Recruitee. Check for data completeness, type consistency, and alignment with the intended schema to ensure a successful migration.
By following these steps, you can effectively transfer data from Recruitee to DynamoDB using a direct approach without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Recruitee is the collaborative hiring software that delivers a complete solution to help internal teams hire better together. As an Applicant Tracking System, it enables recruitment teams to easily manage the hiring process from start to finish while keeping hiring managers and colleagues as active participants. Recruitee is on a mission to empower teams with the best tech tools to hire better together. Its vision is to put collaboration at the core of hiring teams.
Recruitee's API provides access to a wide range of data related to recruitment and hiring processes. The following are the categories of data that can be accessed through the API:
1. Candidates: Information about candidates who have applied for a job, including their name, contact details, resume, and application status.
2. Jobs: Details about job openings, including the job title, description, location, and requirements.
3. Applications: Data related to the application process, such as the date and time of application, the source of the application, and the status of the application.
4. Users: Information about users who have access to the Recruitee account, including their name, email address, and role.
5. Teams: Details about teams within the organization, including the team name, members, and permissions.
6. Stages: Information about the different stages of the recruitment process, such as screening, interviewing, and hiring.
7. Tags: Data related to tags that can be assigned to candidates, jobs, and applications to help with organization and filtering.
8. Custom fields: Information about custom fields that can be added to candidates, jobs, and applications to capture additional data.
Overall, the Recruitee API provides a comprehensive set of data that can be used to streamline recruitment processes and improve hiring outcomes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





