


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from Rocket.Chat. Depending on your access level, you may export data directly from the Rocket.Chat admin interface. Navigate to the administration panel, locate the data export options, and choose the data you want to export. This is typically done in JSON or CSV format.
If the data from Rocket.Chat is exported in a JSON format, you'll need to convert it to CSV format, which is more compatible with Teradata's import processes. Use a script or a tool like Python with the `pandas` library to read the JSON file and convert it to CSV. If the data is already in CSV format, verify its structure to ensure compatibility.
Set up your Teradata environment by ensuring you have access to the database and sufficient permissions to create tables and import data. Use Teradata SQL Assistant or a similar tool to interact with the database. Ensure the necessary tables are created in Teradata to hold the imported data, with structures matching your CSV files.
Before importing, clean the CSV files to ensure data quality. Look for missing values, inconsistent data types, or duplicate entries. Validate that the CSV structure aligns with the table schema in Teradata. Cleaning can be done using spreadsheet software or scripting languages like Python.
Use Teradata's built-in utilities like `Teradata SQL Assistant` or `BTEQ` to load your CSV data into a staging table in Teradata. This intermediary step is crucial for handling data transformation and validation before moving the data into production tables. Use the `IMPORT` command to load the data.
Once the data is in the staging table, perform any necessary transformations using SQL. This might include joining with other tables, filtering out unnecessary data, or converting data types to match the production table schema. Use Teradata SQL commands to execute these transformations.
Finally, move the transformed data from the staging table to the production tables. Use SQL `INSERT INTO SELECT` statements to transfer data efficiently. Ensure that data integrity is maintained and verify the data transfer by executing queries to check row counts and data quality in the production tables.
By following these steps, you can manually move data from Rocket.Chat into Teradata without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Rocket.Chat is a customizable open-source communications platform for organizations with high standards of data protection that enables communication through federation, and over 12 million people are using it for team chat, customer service, and secure files. Rocket.Chat is a free and open-source team chat collaboration platform that permits users to communicate securely in real-time across devices on the web. Rocket.Chat is a platform that develops internal and external communication within a controlled and secure environment.
Rocket.chat's API provides access to a wide range of data related to the chat platform. The following are the categories of data that can be accessed through the API:
1. Users: Information about users, including their name, email address, and profile picture.
2. Channels: Details about channels, including their name, description, and members.
3. Messages: Information about messages sent in channels or direct messages, including the text, sender, and timestamp.
4. Integrations: Details about integrations with other services, such as webhooks and bots.
5. Permissions: Information about user permissions, including roles and permissions granted to specific users.
6. Settings: Configuration settings for the Rocket.chat platform, including server settings and user preferences.
7. Analytics: Data related to platform usage, such as the number of active users and the most popular channels.
Overall, the Rocket.chat API provides a comprehensive set of data that can be used to build custom integrations and applications on top of the chat platform.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





