Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by exporting the data you need from Rocket.Chat. You can do this by accessing the Rocket.Chat administration panel. Navigate to "Administration" > "Data Export". Specify the data range and format (e.g., CSV or JSON) you wish to export. Ensure that you have the necessary permissions to export data.
Set up your local environment to handle the data files. Ensure you have the necessary disk space and tools (such as a text editor or spreadsheet software) to view and manipulate the exported files. This step involves checking file integrity and ensuring there are no missing or corrupted data entries.
Transform the exported data into a format compatible with Firebolt’s data loading requirements. This often involves formatting the data as CSV or Parquet files. Ensure the data types and structures align with Firebolt's schema requirements. Use scripting languages like Python or shell scripts to automate this transformation.
Log into your Firebolt account and set up your database and tables to receive the data. You need to define the schema that matches the transformed data. Use Firebolt's SQL interface to create tables with appropriate data types and indexes for optimal performance.
Use a secure method like SFTP or SCP to transfer the transformed data files to a location accessible by Firebolt. Ensure the file permissions and security protocols are in place to protect the data during transfer. Alternatively, if Firebolt supports direct file uploads from your local machine, use this feature.
Utilize Firebolt's data loading capabilities to import the data into your database. Use the "COPY INTO" SQL command to load the data from the transferred files into the Firebolt tables. Ensure you monitor the process for any errors or issues that might occur during the load.
After loading the data, run queries to verify that the data has been transferred accurately and is accessible. Compare the data in Firebolt with the original Rocket.Chat data to ensure integrity. Additionally, perform performance checks to ensure that your queries run efficiently with the new data loaded.
By following these steps, you can effectively transfer data from Rocket.Chat to Firebolt without relying on third-party connectors or integrations. Adjust each step according to your specific environment and requirements.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Rocket.Chat is a customizable open-source communications platform for organizations with high standards of data protection that enables communication through federation, and over 12 million people are using it for team chat, customer service, and secure files. Rocket.Chat is a free and open-source team chat collaboration platform that permits users to communicate securely in real-time across devices on the web. Rocket.Chat is a platform that develops internal and external communication within a controlled and secure environment.
Rocket.chat's API provides access to a wide range of data related to the chat platform. The following are the categories of data that can be accessed through the API:
1. Users: Information about users, including their name, email address, and profile picture.
2. Channels: Details about channels, including their name, description, and members.
3. Messages: Information about messages sent in channels or direct messages, including the text, sender, and timestamp.
4. Integrations: Details about integrations with other services, such as webhooks and bots.
5. Permissions: Information about user permissions, including roles and permissions granted to specific users.
6. Settings: Configuration settings for the Rocket.chat platform, including server settings and user preferences.
7. Analytics: Data related to platform usage, such as the number of active users and the most popular channels.
Overall, the Rocket.chat API provides a comprehensive set of data that can be used to build custom integrations and applications on top of the chat platform.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





