

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by using Shopify's API to extract your data. You can write a Python script or use any programming language that can make HTTP requests. Shopify provides a RESTful API that allows you to access various endpoints to retrieve data like products, orders, and customers. Be sure to handle authentication using your API key and password, and paginate through results if necessary.
Once you have extracted the data, transform it into a format suitable for storage in Amazon S3. JSON or CSV are common formats for this purpose. Ensure that the data is clean and structured, removing any unnecessary fields and handling any data inconsistencies.
Set up an Amazon S3 bucket where you will store the transformed data. Navigate to the AWS S3 Management Console, create a new bucket, and ensure you configure the right permissions, making sure the bucket is accessible for the AWS Glue service.
Use the AWS SDK for your programming language to upload your transformed data to the S3 bucket. In Python, this can be done using the `boto3` library. Ensure you specify the correct bucket name and object key (file name) when uploading the data.
Navigate to the AWS Glue console and create a new crawler. Configure the crawler to point to your S3 bucket location where the data is stored. Define an IAM role that has the necessary permissions to read from your S3 bucket and write to the AWS Glue Data Catalog.
Execute the Glue crawler to catalog your data. The crawler will automatically detect the schema of your data stored in S3 and create metadata tables in the AWS Glue Data Catalog. This step is crucial for enabling further data processing and querying using AWS Glue jobs or Amazon Athena.
Finally, set up an AWS Glue ETL job to process the data if any further transformation is needed. Write a script in Python or Scala within the Glue job to perform ETL operations as required. Execute the Glue job to process and load the data into your desired AWS data destination or to perform analytics.
By following these steps, you can effectively move data from Shopify to S3 and use AWS Glue to manage and process the data without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Shopify is a cloud-based commerce platform focused on small- to medium-sized businesses and designed for ultimate scalability and reliability. Its software allows merchants to set up, design and manage businesses easily across multi-sales channels: mobile, web, social media, marketplaces, pop-up shops, and even brick-and-mortar stores. It offers a plethora of services including customer engagement, payments, marketing, and shipping tools to provide small merchants with the ability to run an online store simply and efficiently.
Shopify's API provides access to a wide range of data related to an online store's operations. The following are the categories of data that can be accessed through Shopify's API:
1. Products: Information about the products available in the store, including their titles, descriptions, prices, images, and variants.
2. Orders: Details about the orders placed by customers, including the customer's name, shipping address, payment information, and order status.
3. Customers: Information about the customers who have created accounts on the store, including their names, email addresses, and order history.
4. Collections: Details about the collections of products that have been created in the store, including their titles, descriptions, and products included.
5. Discounts: Information about the discounts that have been created in the store, including their codes, types, and amounts.
6. Fulfillment: Details about the fulfillment of orders, including the status of each order and the tracking information for shipped orders.
7. Analytics: Data related to the store's performance, including sales reports, traffic reports, and conversion rates.
8. Storefront: Information about the store's design and layout, including the theme, templates, and customizations.
Overall, Shopify's API provides access to a comprehensive set of data that can be used to manage and optimize an online store's operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: