Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To begin, you'll need to access Toggl’s API to extract data. Start by logging into your Toggl account, then navigate to your profile settings to find the API token. This token is crucial for authenticating your requests to the Toggl API. Keep this token secure as it provides access to your Toggl data.
Determine what specific data you need to transfer from Toggl. This could be time entries, projects, clients, or other data types available through Toggl's API. Understanding your data requirements will help you construct precise API requests and ensure you only transfer necessary data.
Develop a script using a programming language such as Python to extract data from Toggl. Use the `requests` library to send HTTP requests to the Toggl API. Authenticate using your API token and construct GET requests to fetch the desired data. Handle pagination if your data set is large by iterating over pages of results.
Once you've extracted the data, transform it into a format suitable for DynamoDB. DynamoDB is a NoSQL database that requires data to be organized in a hierarchical structure with key-value pairs. Convert your Toggl data into dictionaries or JSON objects that match your DynamoDB table schema.
To interact with DynamoDB, configure your AWS credentials. Install the AWS CLI and run `aws configure` to enter your AWS Access Key ID, Secret Access Key, and set your preferred region. These credentials will allow your script to authenticate with AWS services.
Develop another script, or extend your existing script, to insert the transformed data into DynamoDB. Use the AWS SDK for your chosen programming language (e.g., Boto3 for Python) to connect to DynamoDB. Create a function to batch-write items to your DynamoDB table, ensuring that you handle potential errors and retries.
Run your complete script to perform the data transfer from Toggl to DynamoDB. Monitor the process to ensure data is correctly extracted, transformed, and inserted. Once completed, verify the data in DynamoDB by querying the table and checking for accuracy and completeness against your original Toggl data.
This guide provides a structured approach to manually transferring data from Toggl to DynamoDB without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Toggl is a favorite app which lets you track how much time you spend on activities. Toggl generally builds work tools to uphold your productivity and eliminate stress. Toggl Track is entirely designed for effortless time tracking. It is a simple but mighty time tracker that exhibits you how much your time is valuable. Time tracking that is easy, powerful, and frictionless. The app that helps you make the most of your time. Start and stop tracking your time with a single tap.
Toggl's API provides access to a wide range of data related to time tracking and project management. The following are the categories of data that can be accessed through Toggl's API:
1. Time entries: This includes data related to the time spent on tasks, projects, and clients.
2. Projects: This includes data related to the projects being worked on, such as project name, description, and status.
3. Clients: This includes data related to the clients associated with the projects, such as client name, contact information, and billing details.
4. Users: This includes data related to the users who are using Toggl, such as user name, email address, and role.
5. Tags: This includes data related to the tags associated with time entries, projects, and clients.
6. Workspaces: This includes data related to the workspaces in which the projects and time entries are being managed.
7. Reports: This includes data related to the reports generated by Toggl, such as time summary reports, detailed reports, and project reports.
Overall, Toggl's API provides a comprehensive set of data that can be used to track time, manage projects, and generate reports.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





