Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by accessing the Visma e-conomic API. You'll need your API token for authentication. This can typically be found in your Visma e-conomic account settings under API keys. Ensure you have the necessary permissions to access and export the data.
Utilize the Visma e-conomic API to extract the data you need. This involves sending HTTP GET requests to the appropriate API endpoints to fetch data like invoices, customers, products, etc. Use tools like `curl` or scripts written in Python or JavaScript (Node.js) to automate these requests. Save the responses in a structured format, such as JSON or CSV, to your local environment.
Once you have the data extracted, you will need to transform it into a format compatible with MongoDB. If the data is already in JSON, you may only need to make minor adjustments. However, if it's in CSV or another format, write a script to convert it into JSON. Ensure each JSON document is structured correctly, with fields that match your MongoDB schema.
Ensure you have a MongoDB instance running either locally or on a server. You can use MongoDB Community Server for local setups. Make sure you have the necessary permissions and have created the database and collections needed to store your data. Use the `mongo` shell or MongoDB Compass to interact with your database.
Use MongoDB’s `mongoimport` command-line tool to import the JSON files into your database. The basic syntax is:
```
mongoimport --db yourDatabaseName --collection yourCollectionName --file yourDataFile.json --jsonArray
```
This command will read the JSON file and load the data into the specified MongoDB collection.
After importing, verify that the data has been correctly transferred. Use queries in the `mongo` shell or MongoDB Compass to check a few records and compare them against the original data from Visma e-conomic to ensure accuracy and completeness.
Once you’ve confirmed that the data transfer works as expected, consider automating the process for future data transfers. Write scripts to automate data extraction from Visma e-conomic, transformation into JSON, and import into MongoDB. Use scheduling tools like cron jobs on Unix-based systems or Task Scheduler on Windows to run these scripts at regular intervals.
By following these steps, you'll be able to move data from Visma e-conomic to MongoDB without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Visma e-conomic having other systems like e-commerce, payment service providers, point of sale, marketplaces, logistic and accounting systems. It generally offers businesses with a range of software solutions, including an online accounting program. After all, Visma e-conomic is the market leader in cloud-based financial systems in Denmark and has over 160,000 customers. Visma e-conomic is one kinds of e-commerce market place that is aimed at both small and medium-sized businesses and accountants and bookkeepers.
Visma E-conomic's API provides access to a wide range of data related to accounting and financial management. The following are the categories of data that can be accessed through the API:
1. Customers and Suppliers: Information about customers and suppliers, including contact details, payment terms, and credit limits.
2. Invoices: Details of invoices issued and received, including invoice numbers, dates, amounts, and payment status.
3. Products and Services: Information about products and services offered by the business, including prices, descriptions, and stock levels.
4. Bank Transactions: Details of bank transactions, including deposits, withdrawals, and transfers.
5. Accounting Journals: Information about accounting journals, including general ledger entries, accounts payable, and accounts receivable.
6. VAT: Details of VAT transactions, including VAT rates, amounts, and tax codes.
7. Reports: Access to a range of financial reports, including balance sheets, income statements, and cash flow statements.
Overall, the Visma E-conomic API provides comprehensive access to financial data, enabling businesses to streamline their accounting processes and gain valuable insights into their financial performance.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





