Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by familiarizing yourself with Yotpo's API documentation to understand how to access the data you need. Determine the endpoints for the data you wish to extract. Simultaneously, review MongoDB's requirements for data insertion, including data structure and format.
Create an API key in Yotpo to authenticate your requests. This typically involves generating an API token from your Yotpo account settings. Store this token securely as it will be used to authenticate your API calls.
Write a script in a programming language such as Python or Node.js to make HTTP requests to the Yotpo API. Use the API token for authentication and specify the headers and parameters needed to fetch the desired data. Use libraries like `requests` in Python or `axios` in Node.js to facilitate HTTP requests.
Once the data is retrieved, parse the JSON response to extract relevant fields. Transform the data into a format compatible with MongoDB, ensuring that it adheres to MongoDB's BSON format. This may involve converting data types and structuring nested arrays or documents appropriately.
Ensure that MongoDB is installed and running on your server or local environment. Set up a database and collection within MongoDB where the Yotpo data will be stored. Use the `mongo` shell or a GUI tool like MongoDB Compass to create the necessary database and collection.
Extend your script to connect to your MongoDB instance using a library such as `pymongo` for Python or `mongodb` for Node.js. Use the `insert_one` or `insert_many` methods to insert the transformed data into your MongoDB collection. Handle any potential errors, such as connectivity issues or data type mismatches, during this process.
Test your script thoroughly to ensure that data is correctly extracted from Yotpo and inserted into MongoDB. Once verified, schedule the script to run at regular intervals if ongoing data transfer is required. Use cron jobs on Linux or Task Scheduler on Windows to automate the execution at specified times.
By following these steps, you can efficiently move data from Yotpo to MongoDB while maintaining control over the process and ensuring data integrity.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Yotpo is a customer content marketing platform that helps businesses generate and leverage customer reviews, photos, and Q&A to increase sales and build brand loyalty. The platform offers a suite of tools that enable businesses to collect and showcase user-generated content across various channels, including their website, social media, and email marketing campaigns. Yotpo also provides advanced analytics and insights to help businesses understand their customers' behavior and preferences, as well as tools to engage with customers and respond to their feedback. Overall, Yotpo helps businesses create a more authentic and engaging customer experience that drives growth and customer loyalty.
Yotpo's API provides access to a wide range of data related to customer reviews, ratings, and user-generated content. The following are the categories of data that can be accessed through Yotpo's API:
1. Reviews and Ratings: Yotpo's API provides access to all customer reviews and ratings for a particular product or service.
2. User-Generated Content: Yotpo's API allows access to user-generated content such as photos, videos, and social media posts related to a particular product or service.
3. Customer Data: Yotpo's API provides access to customer data such as name, email address, and location.
4. Analytics: Yotpo's API allows access to analytics data such as conversion rates, click-through rates, and engagement metrics.
5. Product Data: Yotpo's API provides access to product data such as product descriptions, pricing, and inventory levels.
6. Order Data: Yotpo's API allows access to order data such as order status, shipping information, and payment details.
7. Marketing Data: Yotpo's API provides access to marketing data such as campaign performance, email open rates, and click-through rates.
Overall, Yotpo's API provides a comprehensive set of data that can be used to gain insights into customer behavior, improve product offerings, and optimize marketing strategies.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





