

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your Zenloop account. Navigate to the data you wish to transfer, such as survey responses or customer feedback. Use Zenloop’s export functionality to download the data in a common format like CSV or Excel. Ensure that you select the correct parameters for your export, such as date range or specific feedback segments.
Open the exported data file in a spreadsheet application like Microsoft Excel or Google Sheets. Review the data to ensure it is complete and accurate. Clean the data by removing any unnecessary columns or rows, and standardize data formats as needed to match the expected format in Convex.
Access your Convex account and ensure you have the necessary permissions to import data. If needed, create a new table or collection in Convex to store the incoming data. Define the data schema in Convex, specifying field names and data types that correspond to the cleaned data from Zenloop.
Convert your data file into a format compatible with Convex. While Convex may support multiple data import formats, a JSON format is a common choice. Use a script or tool to transform your CSV or Excel data into a JSON file, making sure the structure aligns with Convex’s data schema.
Write a script to automate the data import process. This script should read the JSON file and use Convex’s API to insert the data into the designated collection. Languages like Python or JavaScript are suitable for this task. Incorporate error handling to manage any discrepancies during the import process.
Run the data import script you developed. Monitor the process closely, checking for any errors or warnings that may arise. Ensure that all data records are successfully transferred from the JSON file into Convex’s database. If issues occur, debug the script and rerun as necessary.
After the data import is complete, log into Convex and review the imported data for accuracy and completeness. Compare a sample of the data against the original Zenloop dataset to verify consistency. Make any necessary adjustments or corrections to ensure the data integrity within Convex.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
To sync data the Zenloop API can assist both full refresh and incremental for both answer endpoints. One can select this connector that will copy only the new or updated data, or all rows in the tables and columns you establish for replication, a sync is always run. Zenloop combines perfect customer relationships and it is an integrated experience management floor which based on the Net Promoter Score. The Zenloop API contributes programmatic entry and integration to a customer feeback platform.
Zenloop's API provides access to various types of data related to customer feedback and satisfaction. The categories of data that can be accessed through Zenloop's API are:
1. Feedback data: This includes all the feedback received from customers through various channels such as email, web forms, and social media.
2. Customer data: This includes information about customers such as their name, email address, phone number, and other contact details.
3. Survey data: This includes data related to surveys conducted by the company to gather feedback from customers.
4. Net Promoter Score (NPS) data: This includes data related to the NPS score of the company, which is a measure of customer satisfaction and loyalty.
5. Sentiment analysis data: This includes data related to the sentiment of customer feedback, which can help companies understand the overall sentiment of their customers towards their products or services.
6. Analytics data: This includes data related to customer behavior, such as the number of visits to the company's website, the time spent on the website, and the pages visited.
Overall, Zenloop's API provides access to a wide range of data that can help companies gain insights into customer feedback and satisfaction, and make data-driven decisions to improve their products and services.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





