Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the necessary data from Zoho CRM. Log in to your Zoho CRM account, navigate to the module (such as Contacts, Leads, or Accounts) you wish to export, and use the built-in export feature. Select the appropriate filters and data fields you need, and export the data in a CSV format. This CSV file will be used to import data into Convex.
After exporting your data, open the CSV file with a spreadsheet application like Microsoft Excel or Google Sheets. Review the data to ensure it is clean and properly formatted. Make any necessary adjustments to the data, such as removing duplicates or correcting inconsistent entries. Ensure that the columns match the required fields in Convex for a smooth import process.
Log in to your Convex account. If you do not have an account, you will need to create one to proceed with the data import. Familiarize yourself with the interface, especially the data import section, to ensure that you know where to upload the CSV file.
Before importing the data into Convex, you need to map the data fields from your CSV file to the corresponding fields in Convex. Refer to Convex's documentation or support to understand the required fields and their formats. Ensure that the CSV column headers match or are correctly mapped to Convex's data fields.
Navigate to the data import section of your Convex account. Select the option to import data from a CSV file, and follow the prompts to upload your prepared CSV file. During the import process, use the mapping you determined in the previous step to align the CSV columns with Convex's fields. Double-check that all required fields are mapped correctly.
After the import process is complete, Convex may provide a summary of the import along with any errors or warnings. Review this summary carefully to identify any issues with the imported data. If there are errors, correct them in your CSV file and re-import the corrected data as necessary.
Once your data is imported, perform a thorough review within Convex to ensure data integrity. Check that all records are present and correctly populated. Conduct sample checks to verify that critical data points have been accurately transferred. If any discrepancies are found, address them promptly to maintain data consistency.
By following these steps, you can successfully transfer data from Zoho CRM to Convex without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Zoho CRM is a comprehensive cloud-based customer relationship management platform designed to help businesses of all sizes streamline their sales, marketing, and customer service operations. It offers a wide range of features, including lead and contact management, sales forecasting, automated workflow creation, and real-time reporting and analytics. Zoho CRM's intuitive interface and customizable modules allow teams to tailor the platform to their specific business needs. It also integrates seamlessly with other Zoho apps and marketing automation tools, enabling a unified view of customer data across multiple touchpoints. With its robust capabilities, scalability, and affordable pricing plans, Zoho CRM empowers businesses to optimize their customer interactions, enhance productivity, and drive growth.
Zoho CRM's API provides access to a wide range of data related to customer relationship management. The following are the categories of data that can be accessed through Zoho CRM's API:
1. Contacts: This includes information about individual contacts such as name, email address, phone number, and job title.
2. Accounts: This includes information about companies or organizations such as name, address, and industry.
3. Leads: This includes information about potential customers who have shown interest in a product or service.
4. Deals: This includes information about sales opportunities, including the deal amount, stage, and probability of closing.
5. Activities: This includes information about tasks, events, and calls related to a contact, account, or deal.
6. Notes: This includes information about notes and comments related to a contact, account, or deal.
7. Custom modules: This includes information about custom modules that have been created in Zoho CRM, such as project management or inventory management.
Overall, Zoho CRM's API provides access to a comprehensive set of data that can be used to manage customer relationships and improve business processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: