Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting the data you need from EmailOctopus. Log in to your EmailOctopus account, navigate to the list or campaign data you want to export, and use the export feature to download the data. EmailOctopus typically allows you to export data in CSV format, which is suitable for further processing.
After exporting the CSV file from EmailOctopus, open it using a spreadsheet application like Microsoft Excel or Google Sheets. Clean and format the data as needed, ensuring that it matches the schema requirements of your TiDB database. This might involve renaming headers, ensuring data types are correct, or removing unnecessary columns.
Ensure you have a TiDB environment set up and running. This involves installing TiDB if you haven"t already, configuring the necessary parameters, and starting the TiDB server. Ensure you have access credentials and the necessary permissions to create databases and tables.
Using a SQL client (such as MySQL client or any other SQL interface that supports TiDB), connect to your TiDB instance. Create a table that matches the structure of your CSV data. Define the appropriate data types for each column based on the data you intend to import.
Convert your CSV data into SQL insert statements. You can manually write these statements or use a script in a programming language like Python or JavaScript to automate the conversion. The script should read the CSV file and generate SQL statements that insert each row into the TiDB table you created.
Execute the SQL insert statements against your TiDB database. You can do this by copying the SQL statements into your SQL client and running them, or by using a script that connects to the TiDB database and executes the insert commands programmatically. Ensure that all data is correctly inserted by checking the table contents.
After importing the data, verify that the data in TiDB matches the original data from EmailOctopus. Perform checks to ensure data integrity, such as confirming row counts, checking field values, and verifying data types. If any discrepancies are found, troubleshoot and resolve them to ensure a successful data migration.
This guide provides a straightforward approach to manually migrating data from EmailOctopus to TiDB without relying on third-party tools or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
EmailOctopus provides simple and powerful tools to increase your business at affordable pricing and it can easily build relationships, accelerate lead generation and transform subscribers into customers. EmailOctopus is a low-cost email marketing platform that provides businesses, creators and marketers with the essential features they need to grow their mailing list and engage their audience. You can manage and email your subscribers for far cheaper through EmailOctopus. It provides clear analytics on campaign performance, allowing users to track every open, click, bounce and unsubscribe to optimize marketing efforts.
EmailOctopus's API provides access to a wide range of data related to email marketing campaigns. The following are the categories of data that can be accessed through the API:
1. Lists: Information about the email lists created in EmailOctopus, including the number of subscribers, list name, and list ID.
2. Subscribers: Data related to the subscribers on the email lists, including their email address, name, and subscription status.
3. Campaigns: Information about the email campaigns created in EmailOctopus, including the campaign name, ID, and status.
4. Reports: Data related to the performance of email campaigns, including open rates, click-through rates, and bounce rates.
5. Templates: Information about the email templates created in EmailOctopus, including the template name, ID, and content.
6. Automations: Data related to the automated email campaigns created in EmailOctopus, including the automation name, ID, and status.
7. Webhooks: Information about the webhooks set up in EmailOctopus, including the webhook URL, event type, and status.
Overall, EmailOctopus's API provides access to a comprehensive set of data that can be used to analyze and optimize email marketing campaigns.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





